Head of Data Science Engineering

Jobleads
London
10 months ago
Applications closed

Related Jobs

View all jobs

Head of Data Science & ML Engineering

Head of Data Science

Head of Data Science

Head of Data Science

Head of Data Science

Head of Data Engineering

Job Description

An exciting opportunity has arisen for an experienced data leader to drive innovation and enhance data-driven decision-making at a leading private equity firm. This role will spearhead the development of cutting-edge data solutions, leveraging advanced analytics, predictive modeling, and machine learning to optimize investment strategies and operational efficiency.

The Role

As Head of Data , you will be responsible for shaping and executing the firm’s data strategy, working closely with stakeholders across technology, investment, and transformation teams.

Your expertise in data engineering, analytics, and machine learning will play a pivotal role in building scalable data solutions, refining governance frameworks, and enhancing analytical capabilities.

Key Responsibilities

  • Collaborate with senior leadership to refine and implement the firm’s data science strategy, aligning it with broader business priorities.
  • Design and develop data platforms, pipelines, and analytical tools that support investment decision-making and risk management.
  • Drive innovation by applying advanced machine learning techniques, AI, and predictive modeling to private markets investment challenges.
  • Oversee data governance, ensuring high-quality, structured, and unstructured data is effectively managed and utilized.
  • Enhance reporting and analytics capabilities, creating intuitive dashboards and user-centric analytical solutions.
  • Lead a high-performing data team, providing mentorship, professional development, and fostering a culture of continuous improvement.
  • Monitor industry trends, regulatory developments, and emerging technologies to keep the firm at the forefront of data innovation.
  • Establish KPIs to measure the success of data initiatives and provide insights to senior leadership.

Requirements

  • Experience in data science, data engineering, or analytics, ideally within investment management, financial services, or private markets.
  • Strong technical expertise in data architecture, data lakes, and cloud platforms, including experience with machine learning frameworks (TensorFlow, PyTorch, Hugging Face) and big data processing (Spark, Synapse).
  • Proven track record of leading high-performing teams and driving data-led transformation within a complex organization.
  • Strong strategic mindset with the ability to translate data insights into actionable business outcomes.
  • Excellent communication skills, with the ability to influence senior stakeholders and drive cross-functional collaboration.

This is a unique opportunity to shape the future of data science and engineering within a dynamic investment environment. If you’re a forward-thinking data leader looking to make a meaningful impact, I’d love to hear from you.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.