Head of Data Science

Data Idols
City of London
1 week ago
Create job alert
Head of Data Science

Salary: 110K - 120K + bonus


Location: Manchester 2-4 days a month


The Opportunity

We're working with a high-growth business that is scaling its data function to the next level. Data scientists here have traditionally combined reporting with predictive modelling, but the business is now creating a dedicated leadership role to bring focus, structure and engineering rigour to the discipline.


As Head of Data Science, you'll lead a growing team of 6+ scientists embedded across product and functional teams, while also setting the technical direction and ensuring alignment with company-wide OKRs. You'll drive the transition towards machine learning engineering, championing end-to-end model ownership from research through to deployment in production. This is a fantastic opportunity to shape the data science strategy, support the career growth of talented scientists, and deliver measurable impact in areas such as search, pricing, personalisation, vouchers, marketing, operations and finance.


Skills and Experience

  • Proven leadership experience in data science or machine learning, ideally within product‑led or consumer‑facing organisations
  • Strong background in building and deploying ML models at scale in production environments
  • Ability to structure and lead embedded data science teams, partnering effectively with senior stakeholders across multiple domains
  • Hands‑on technical expertise with tools such as Databricks, Python, Spark, and GCP/BigQuery
  • Engineering mindset, with experience moving teams toward machine learning engineering best practice
  • Credibility to lead long‑tenured individual contributors while providing direction, mentorship and career development

If you are looking for a new challenge, then please submit your CV for initial screening and more details.


#J-18808-Ljbffr

Related Jobs

View all jobs

Head of Data Science

Head of Data Science

Head of Data Science - Fintech

Head of Data Science - Fintech

Head of Data Science

Head of Data Science & Analytics, Product & Marketing

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.