Head of Data Science

Amplifi Capital
London
1 year ago
Applications closed

Related Jobs

View all jobs

Head of Data Science

Head of Data Science - Advanced Analytics & AI

Head of Data Science, AI & Advanced Analytics Strategy

Head of Data Science & Analytics, Product & Marketing

Head of Data Science — Hybrid Leader, £160k+ Bonus

Head of Data Science -Telematics

About Us:

One-third of the UK working-age population is not able to access mainstream financial services. These people find themselves excluded from affordable credit and treated poorly by mainstream financial institutions. Too few are successfully supported on the journey to financial health. Our purpose is “To improve the nation’s financial health through accessibility, affordability and community.”

We are a fast-growing social FinTech company giving not-for-profit Credit Unions in the UK access to a state-of-the-art fintech. We aim to grow a select group of Community Lenders into a network of challenger banks offering a viable alternative to high-cost lenders.

We are a small and dynamic team of 250+ people, offering you the opportunity to have an immediate impact on the business and grow with us. We have over 120,000+ customers on our platform and it’s increasing rapidly.

We grew significantly in size over the last year and the credit unions on our platform are the biggest players in the UK.

The Role:

At Amplifi, data lies at the heart of all strategies. We strongly believe that innovative use of data and AI is the key to delivering on our strategic growth objectives. We are always looking to push the boundaries of what can be achieved through intelligent use of data, and are constantly looking to incorporate new and disparate, sometimes unconventional, data sources and modern data, analytics and modelling technologies into our decision-making. The Head of Data Science role lies at the centre of achieving this objective.

As the Head of Data Science, you are expected to build and lead a team of decision scientists to deliver statistical models that solve real-life business problems and drive strategic business objectives. This role reports directly into the Managing Director and is responsible for building out the team whilst also remaining hands-on with some of the model development initially.

Responsibilities:

  • Work with the business strategy teams to identify decision science problems that offer the greatest opportunities to the organisation.
  • Lead the development of key credit risk models, ensuring they provide the business with a strategic edge for growth and risk management.
  • Summarise and present recommendations and proposals to C-level execs and external stakeholders (such as partners and investors) with actionable insights.
  • Explore large sets of structured and unstructured data from disparate sources, including new, and unconventional ones, and come up with innovative ways of using this data. Design appropriate tests to collect additional data, if required.
  • Provide thought leadership on advances in Data Science, identifying opportunities within the business for the execution of new ideas, tools and platforms.
  • Combine traditional modelling techniques with cutting edge algorithms to build sophisticated modelling solutions to predict various aspects of customer behaviour, competitive landscape, market movements, which help shape through-the-lifecycle strategies relating to Credit Risk Underwriting, Fraud prevention, Pricing, Customer Retention and Value Management, Collections and Customer Services.
  • Work with wider Data Engineering, Decision Systems and ML Ops teams to ensure proper testing, validation and deployment of ML models in live environments and their ongoing performance monitoring.
  • Create and maintain guidelines for model development, validation and testing as well as documentation to ensure consistency, efficiency and best practices.
  • Working with Data Engineering, and ML Ops teams, manage the development and maintenance of high-quality data structures and feature stores to facilitate efficient and scalable model building and reporting.
  • Hire, manage and mentor team of decision scientists.

This is a high impact role in a fast-growing business and hence the ideal candidate would be someone who:

  • Is passionate about Data Science, Modelling and Analytics.
  • Is self-motivated and proactive; shows ownership and initiative - Not afraid of being hands-on and possess a roll-up-your-sleeves attitude to get things done.
  • Has excellent communication and stakeholder management skills.

To be successful in the role, the candidate should:

  • Ideally have 5+ Years of experience in Modelling / Data Science disciplines.
  • Be experienced in modelling project management, from initial conception and approval through to final delivery, across multidisciplinary teams.
  • Have proven experience and ability to train others in coding and modelling, using Python / SQL, with high coding standards.
  • Hold in-depth practical understanding of the content, format and subtleties of UK bureau data (e.g. Experian, Equifax, TransUnion).
  • Be an expert in probability and statistics.
  • Possess proven expertise in traditional credit risk modelling techniques.
  • Have a strong understanding and genuine interest in machine learning (ML), deep learning, decision trees, random forests, GBM, SVM, naïve Bayes, anomaly detection, clustering.
  • Understand basics of data pipelines and ML Ops.
  • Preferably have a degree in a numerate (STEM) discipline or else have equivalent skills derived from self-learning / online courses combined with real-life modelling experience. (Feel free to share link to existing git projects).

Desirable Requirements:

Financial services experience, particularly consumer credit.

Scale-up experience.

  • Competitive salary.
  • 25 days annual leave.
  • Private Health Cover via Bupa.
  • Cycle-to-Work Scheme.
  • Subsidised Nursery scheme.
  • Hybrid working (2 days from home).

Commitment:

We are committed to equality of opportunity for all staff and applications from individuals are encouraged regardless of age, disability, sex, gender reassignment, sexual orientation, pregnancy and maternity, race, religion or belief and marriage and civil partnerships.

Please note that all offers of employment are conditional on us obtaining satisfactory pre-employment checks, including a DBS check, a credit check and employment references.

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.