Head of AI

London
2 weeks ago
Create job alert

This is an exciting role for an experienced candidate to provide decision science and analytics leadership across the technical organisation within the business. As the Head of AI, you will be delivering best in class data analytics to the business,leadershipand a range of data-driven solutions to complex problems with very high levels of ambiguity using both structured and unstructured data across the enterprise.

Job Responsibilities

  • Guides and mentors a team of data scientists to use a wide range data science techniques for descriptive, diagnostic, predictive, and prescriptive analyses.

  • Sets the vision for manipulation and analyses of large and complex data sets.

  • Distils the complexities of analytics (tagging, data, reporting) into layman terms, providing impactful visualisations, actionable insights and test/optimisation opportunities.

  • Leads the team in leveraging machine learning and Artificial Intelligence technologies to drive real time customer centric decision making .

  • Builds out a world class data science team that is aligned to support to the business as key business function.

  • Provides thought leadership to support the key technology initiatives.

  • Utilises expertise to guide the decision on leading edge technical / business approaches and/or develops major new technical tools.

  • Facilitates communication between executives, staff, management, vendors, and other technology resources within and outside of the organization. Shares highly complex information related to areas of expertise.

  • Interacts with senior management to keep abreast of objectives. Interacts with direct reports and peers in management / customers / vendors to interpret information and improve cross-functional processes and programs. Builds and enhances key internal and external contacts.

    Basic Qualifications

  • Master's degree and at least 6 years of experience in a quantitative or computational function.

  • Deep knowledge of open source data science and statistics packages such as Python, R, Spark, etc.

  • Experience in data science, advanced analytics, or statistics. Ability to interrogate data, perform analyses, interpret data, and present to business audiences.

  • Deep knowledge of SQL.

  • Excellent communication skills (both orally and in writing) with a superb ability to communicate technical information to senior executives.

  • Previous experience contributing to financial decisions in the workplace.

  • Previous direct leadership, indirect leadership and/or cross- functional team leadership.

    If this is the role for you, apply today

Related Jobs

View all jobs

Head of AI

Head of AI (Computer Vision)

Head of Data & AI

Head of Data & AI

Head of Data & AI

Head of Data & AI

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.