Head of AI

London
2 weeks ago
Create job alert

This is an exciting role for an experienced candidate to provide decision science and analytics leadership across the technical organisation within the business. As the Head of AI, you will be delivering best in class data analytics to the business,leadershipand a range of data-driven solutions to complex problems with very high levels of ambiguity using both structured and unstructured data across the enterprise.

Job Responsibilities

  • Guides and mentors a team of data scientists to use a wide range data science techniques for descriptive, diagnostic, predictive, and prescriptive analyses.

  • Sets the vision for manipulation and analyses of large and complex data sets.

  • Distils the complexities of analytics (tagging, data, reporting) into layman terms, providing impactful visualisations, actionable insights and test/optimisation opportunities.

  • Leads the team in leveraging machine learning and Artificial Intelligence technologies to drive real time customer centric decision making .

  • Builds out a world class data science team that is aligned to support to the business as key business function.

  • Provides thought leadership to support the key technology initiatives.

  • Utilises expertise to guide the decision on leading edge technical / business approaches and/or develops major new technical tools.

  • Facilitates communication between executives, staff, management, vendors, and other technology resources within and outside of the organization. Shares highly complex information related to areas of expertise.

  • Interacts with senior management to keep abreast of objectives. Interacts with direct reports and peers in management / customers / vendors to interpret information and improve cross-functional processes and programs. Builds and enhances key internal and external contacts.

    Basic Qualifications

  • Master's degree and at least 6 years of experience in a quantitative or computational function.

  • Deep knowledge of open source data science and statistics packages such as Python, R, Spark, etc.

  • Experience in data science, advanced analytics, or statistics. Ability to interrogate data, perform analyses, interpret data, and present to business audiences.

  • Deep knowledge of SQL.

  • Excellent communication skills (both orally and in writing) with a superb ability to communicate technical information to senior executives.

  • Previous experience contributing to financial decisions in the workplace.

  • Previous direct leadership, indirect leadership and/or cross- functional team leadership.

    If this is the role for you, apply today

Related Jobs

View all jobs

Head Of Product

Lead Data Engineer

Data Scientist - Newcastle - Hybrid Remote - £60k - £65k

Chief Architect - Skynet Ground Systems

TechOps Engineering Manager

Market Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Machine Learning Edition

Machine learning (ML) has firmly established itself as a crucial part of modern technology, powering everything from personalised recommendations and fraud detection to advanced robotics and predictive maintenance. Both start-ups and multinational corporations depend on machine learning engineers and data experts to gain a competitive edge via data-driven insights and automation. However, even this high-demand sector can experience a downturn when broader economic forces—such as global recessions, wavering investor confidence, or unforeseen financial events—lead to more selective hiring, stricter budgets, and lengthier recruitment cycles. For ML professionals, the result can be fewer available positions, more rivals applying for each role, or narrower project scopes. Nevertheless, the paradox is that organisations still require skilled ML practitioners to optimise operations, explore new revenue channels, and cope with fast-changing market conditions. This guide aims to help you adjust your job-hunting tactics to these challenges, so you can still secure a fulfilling position despite uncertain economic headwinds. We will cover: How market volatility influences machine learning recruitment and your subsequent steps. Effective strategies to distinguish yourself when the field becomes more discerning. Ways to showcase your technical and interpersonal skills with tangible business impact. Methods for maintaining morale and momentum throughout potentially protracted hiring processes. How www.machinelearningjobs.co.uk can direct you towards the right opportunities in machine learning. By sharpening your professional profile, aligning your abilities with in-demand areas, and engaging with a focused ML community, you can position yourself for success—even in challenging financial conditions.

How to Achieve Work-Life Balance in Machine Learning Jobs: Realistic Strategies and Mental Health Tips

Machine Learning (ML) has become a cornerstone of modern innovation, powering everything from personalised recommendation engines and chatbots to autonomous vehicles and advanced data analytics. With numerous industries integrating ML into their core operations, the demand for skilled professionals—such as ML engineers, research scientists, and data strategists—continues to surge. High salaries, cutting-edge projects, and rapid professional growth attract talent in droves, creating a vibrant yet intensely competitive sector. But the dynamism of this field can cut both ways. Along with fulfilling opportunities comes the pressure of tight deadlines, complex problem-solving, continuous learning curves, and high-stakes project deliverables. It’s a setting where many professionals ask themselves, “Is true work-life balance even possible?” When new algorithms emerge daily and stakeholder expectations soar, the line between healthy dedication and perpetual overwork can become alarmingly thin. This comprehensive guide aims to shed light on how to achieve a healthy work-life balance in Machine Learning roles. We’ll discuss the distinctive pressures ML professionals face, realistic approaches to managing workloads, strategies for safeguarding mental health, and how boundary-setting can be the difference between sustained career growth and burnout. Whether you’re just getting started or have been at the forefront of ML for years, these insights will empower you to excel without sacrificing your well-being.

Transitioning from Academia to the Machine Learning Industry: How PhDs and Researchers Can Thrive in Commercial ML Settings

Machine learning (ML) has rapidly evolved from an academic discipline into a cornerstone of commercial innovation. From personalising online content to accelerating drug discovery, machine learning technologies permeate nearly every sector, creating exciting career avenues for talented researchers. If you’re a PhD or academic scientist thinking about leaping into this dynamic field, you’re not alone. Companies are eager to recruit professionals with a strong foundation in algorithms, statistical methods, and domain-specific knowledge to build the intelligent products of tomorrow. This article explores the essential steps academics can take to transition into industry roles in machine learning. We’ll discuss the differences between academic and commercial research, the skill sets most in demand, and how to optimise your CV and interview strategy. You’ll also find tips on networking, developing a commercial mindset, and navigating common challenges as you pivot your career from the halls of academia to the ML-driven tech sector.