Genomic Data Scientist (we have office locations in Cambridge, Leeds & London)

Canary Wharf
6 days ago
Create job alert

Company Description

Genomics England partners with the NHS to provide whole genome sequencing diagnostics. We also equip researchers to find the causes of disease and develop new treatments – with patients and participants at the heart of it all.

Our mission is to continue refining, scaling, and evolving our ability to enable others to deliver genomic healthcare and conduct genomic research.

We are accelerating our impact and working with patients, doctors, scientists, government and industry to improve genomic testing, and help researchers access the health data and technology they need to make new medical discoveries and create more effective, targeted medicines for everybody.

Job Description

We are seeking a Genomic Data Scientist to join our Bioinformatics Consulting team to work on a range of genome analysis and interpretation projects with an emphasis in rare or complex disease, in collaboration with and on behalf of our external researchers and industrial partners.  

In this role, you will work as part of multidisciplinary teams to develop and execute cutting edge projects that leverage Genomics England datasets to address research goals such as drug target identification, biomarker discovery, diagnostic discovery, and patient stratification. 

You will contribute to the scoping, implementation, and application of state-of-the-art approaches for analysis of genomic and other omics modalities, in both leading and supporting capacity. As an expert user of our datasets and research environment, you will develop and fine-tune tools and pipelines to perform custom computational analyses, generate new data and contribute to high quality reports and documentation. 

Everyday responsibilities include: 

Preparing data for downstream analysis, e.g. through quality control, functional annotation, aggregation, harmonisation across different datasets. 
Planning and supporting analyses to meet project objectives with internal teams and external stakeholders. Providing support to internal teams and collaborators and being the point of reference for genomic datasets and analytical approaches. 
Performing custom computational analyses on whole genome sequencing and other omics data, such as GWAS, aggregate variant testing, meta-analysis, differential abundance, fine-mapping and MR. 
Researching the scientific literature, identifying new approaches to processing and analysis of genomics and multi-omics data, benchmarking and improving tools.
Contributing to the publication and dissemination of findings via scientific papers, white papers and conference presentations. Skills and Experience for Success:

Strong programming skills (R, Python) and solid background of statistical genetics.
Demonstrable experience using whole genome sequencing data in the context of human genetics.   
Strong background in human disease genetics, preferably in rare or complex disease, demonstrated by publication record or industry track record. 
Demonstrable experience with at least one additional omics modality (e.g. long read sequencing, single cell transcriptomics, proteomics, metabolomics).
Proven track record in one or more areas of human germline DNA analysis such as genetic association testing, population genetics, pharmacogenomics, rare disease genomics, structural variation analysis, working with complex genomic regions such as HLA/KIR/PGx. 
Experience with working in the cloud, building containers, and running pipelines in nextflow.  
Proven ability to communicate with stakeholders from diverse backgrounds (e.g. management, IT, R&D, biology, bioinformatics) and keep track of customer relationships, and a clear understanding of clinical and phenotypic data management and the sensitivities surrounding patient cohort data. 
Excellent interpersonal skills, attention to detail, self-motivation, collaborative and delivery mindset  

Qualifications

A PhD involving one of the following: Statistical or Computational Genetics, Biostatistics, Population Genetics or equivalent quantitative discipline. 

Additional Information

Salary from £55,000

Being an integral part of such a meaningful mission is extremely rewarding in itself, but in order to support our people, we’re continually improving our benefits package. We pride ourselves on investing in our people and supporting them to achieve their career goals, as well as offering a benefits package including: 

Generous Leave: 30 days’ holiday plus bank holidays, additional leave for long service, and the option to apply for up to 30 days of remote working abroad annually (approval required).
Family-Friendly: Blended working arrangements, flexible working, enhanced maternity, paternity and shared parental leave benefits.
Pension & Financial: Defined contribution pension (Genomics England double-matches up to 10%, however you can contribute more if you wish), Life Assurance (3x salary), and a Give As You Earn scheme.
Learning & Development: Individual learning budgets, support for training and certifications, and reimbursement for one annual professional subscription (approval required).
Recognition & Rewards: Employee recognition programme and referral scheme.
Health & Wellbeing: Subsidised gym membership, a free Headspace account, and access to an Employee Assistance Programme, eye tests, flu jabs.Equal opportunities and our commitment to a diverse and inclusive workplace 

Genomics England is actively committed to providing and supporting an inclusive environment that promotes equity, diversity and inclusion best practice both within our community and in any other area where we have influence. We are proud of our diverse community where everyone can come to work and feel welcomed and treated with respect regardless of any disability, ethnicity, gender, gender identity, religion, sexual orientation, or social background. 

Genomics England’s policies of non-discrimination and equity and will be applied fairly to all people, regardless of age, disability, gender identity or reassignment, marital or civil partnership status, being pregnant or recently becoming a parent, race, religion or beliefs, sex or sexual orientation, length of service, whether full or part-time or employed under a permanent or a fixed-term contract or any other relevant factor.  

Genomics England does not tolerate any form of discrimination, harassment, victimisation or bullying at work. Such behaviour is contrary to

Related Jobs

View all jobs

Genomic Data Scientist (we have office locations in Cambridge, Leeds & London)

Biomarker Data Analyst

Applied Machine Learning Researcher (we have office locations in Cambridge, Leeds & London)

Senior Data Scientist, Quantitative Biosciences ...

Senior Data Scientist

Machine Learning Engineer (Oxford)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!