Senior/Lead Health Data Scientist – Statistical Genetics

Optima Partners
Edinburgh
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Manager, Forward-Deployed Data Science

Senior Data Scientist

Senior Data Scientist (UK)

Portfolio Revenue & Debt Data Scientist

Senior Machine Learning & AI Engineer

Benefit Risk Management Center of Excellence Data Scientist

Senior/Lead Health Data Scientist – Statistical Genetics

We are an advanced data and business consultancy headquartered in Edinburgh, UK. We are a practitioner-led organisation that collaborates with top consumer brands to drive transformation and foster customer-centricity through our expertise in customer strategy, innovative design, and advanced data science and engineering.


In late 2023, we proudly launched our new division, bioXcelerate AI, which stands at the forefront of revolutionising life sciences and healthcare research. bioXcelerate AI uses state-of-the‑art data science and proprietary algorithms to accelerate the transformation of data into actionable insights, redefining industry standards. At bioXcelerate, we are fostering a scientific community; therefore, our scientists are exposed to a vast academic collaborations while delivering on pressing issues in the life sciences industry.


The opportunity

As part of our expansion, we are dedicated to advancing our capabilities in data science and statistical genetics. We are seeking an exceptional Data Scientist specialising in Statistical Genetics and Computational Biology to join our team. This role will be pivotal in driving our genetic research initiatives and contributing to cutting‑edge solutions that enhance our services.


What you will be doing

  • Design and conduct advanced statistical analyses of large-scale genetic and genomic datasets.
  • Ability to interpret the results and find tangible link between the outcomes and the methodology applied.
  • Develop and validate theoretically grounded methods to understand genetic contributions to complex traits and diseases.
  • Stay abreast of the latest advancements in statistical genetics and bioinformatics, incorporating relevant techniques into ongoing projects.
  • Drive forward the development of the Innovation capabilities & lead the growth of the team
  • Ensure the integrity, security, and confidentiality of genetic data in compliance with relevant regulations.
  • Implement and maintain high standards for data quality and reproducibility in research findings.
  • Communicate complex statistical genetic concepts and findings to non-technical stakeholders.
  • Communicate and align with engineering and product teams and work towards achieving common understanding of needs and requirements.
  • Ensure the deliverables follow a timely manner according to the scope pre-defined for individual projects.
  • Prepare and present scientific publications, reports, and presentations to both internal and external audiences.

What skills we would like you to have

  • PhD (or Master’s degree with extensive experience) in quantitative discipline such as Statistical Genetics, Bioinformatics, Computational Biology, or a related field.
  • Minimum 3 years of experience in statistical genetics or a closely related discipline.
  • Strong programming skills in languages such as R, Python, and experience with relevant bioinformatics tools and databases.
  • Extensive experience with large-scale genomic datasets (e.g., Open Target Genetics, GWAS-/eQTLCat) and biobanks (e.g., UKBiobank, FinnGen).
  • Experience in target validation procedures such as variant annotations (VEP), GO enrichment, pathway enrichment, PPIs.


  • Experience working with at least one cloud platform (Azure, GCP, AWS).


  • Proven track record of accomplishment of conducting and publishing high-quality research in statistical genetics.
  • Effective communication skills with the ability to convey complex scientific concepts to a diverse audience.
  • Apply statistical genetics methodologies such as genome-wide association studies (GWAS), meta-analysis, polygenic risk scoring, heritability.
  • Apply genetics causal inference methodologies such as finemapping, colocalization and Mendelian randomization.
  • Scientifically support ideation, design, development and maintenance of the large-scale pipelines and workflows.
  • Ensure robust data processing pipelines and workflows for handling large-scale genomic data.
  • Familiarity with target validation approaches such as ontology & pathway enrichment, gene and protein annotations, disease-phenotype associations.

What we offer

  • Competitive base salary
  • Inclusion in our annual discretionary bonus plan with an on-target performance bonus of up to 15%.
  • Inclusion in bioXcelerate’s R&D incentive scheme which rewards members for their contribution to innovations that add value to the Optima portfolio.
  • Up to 37 days holiday, inclusive of personal and public allocations, of which 7 are fixed days (Christmas & New Year) and 30 are floating, taken at your discretion subject to client scheduling and line manager approval.
  • Private medical insurance (single cover).
  • Group life & income protection insurance.
  • Salary Sacrifice Pension Scheme after 3 months employment
  • Access to over 1,000 perks and discounts via an employee discount portal.
  • Dedicated development time, tools and funding to support personal and professional development.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.