Genetic Data Analyst (The Genome Decoder)

Unreal Gigs
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Scientist

Senior AI Data Scientist

Graduate Data Engineer

Data Analyst

Data Scientist

Are you passionate about unlocking the secrets hidden in the human genome? Do you have a knack for analyzing complex genetic datasets to uncover meaningful insights that drive advancements in personalized medicine, genomics research, and biotechnology? If you’re excited about turning raw genetic data into actionable knowledge that can change the future of healthcare,our clienthas the ideal role for you. We’re looking for aGenetic Data Analyst(aka The Genome Decoder) to help analyze, interpret, and manage large-scale genomic datasets that provide valuable insights into human health, disease, and genetic variation.

As a Genetic Data Analyst atour client, you’ll collaborate with bioinformaticians, geneticists, and researchers to make sense of vast genomic datasets. You’ll play a key role in analyzing sequencing data, identifying genetic variants, and developing data-driven solutions that improve precision medicine, drug development, and clinical diagnostics.

Key Responsibilities:

  1. Analyze and Interpret Genomic Data:
  • Perform in-depth analysis of genomic and genetic data, including DNA sequencing (NGS), RNA-seq, and whole-genome sequencing datasets. You’ll identify genetic variants, mutations, and biomarkers that are critical for research and clinical applications.
Develop and Maintain Data Pipelines:
  • Build and manage data analysis pipelines that automate the processing of large-scale genetic datasets. You’ll ensure that these pipelines are efficient, scalable, and able to handle complex data from multiple sources, including high-throughput sequencing technologies.
Collaborate with Geneticists and Researchers:
  • Work closely with geneticists, bioinformaticians, and clinical researchers to translate genomic data into actionable insights. You’ll support their research by providing detailed data analysis, statistical interpretation, and visualization of genetic findings.
Perform Statistical and Bioinformatics Analyses:
  • Apply statistical techniques and bioinformatics tools to analyze genetic data, identify significant patterns, and validate findings. You’ll use tools like R, Python, Bioconductor, and other bioinformatics software to extract meaningful insights from raw data.
Support Precision Medicine Initiatives:
  • Contribute to precision medicine projects by identifying genetic variants associated with diseases, drug responses, and hereditary conditions. You’ll help develop personalized treatment plans and therapies based on individual genetic profiles.
Visualize and Report Data Insights:
  • Create visualizations, reports, and presentations that communicate complex genetic data clearly and effectively. You’ll use data visualization tools to present findings to non-technical stakeholders, including clinical teams and research collaborators.
Ensure Data Quality and Integrity:
  • Implement robust data quality checks to ensure the accuracy, reliability, and reproducibility of genetic analyses. You’ll work to maintain data integrity across different stages of analysis and ensure that results meet high scientific standards.

Requirements

Required Skills:

  • Genomics and Bioinformatics Expertise:Extensive experience in analyzing and interpreting genomic data, including whole-genome sequencing (WGS), exome sequencing, RNA-seq, and other high-throughput sequencing datasets. You’re familiar with common genetic analysis tools and databases (e.g., GATK, VEP, dbSNP).
  • Programming and Data Analysis:Proficiency in programming languages like Python, R, or Perl for data analysis and pipeline development. You’re skilled in applying statistical methods to large genetic datasets and interpreting results.
  • Data Visualization and Reporting:Experience using data visualization tools like ggplot2, Matplotlib, or Seaborn to present genetic data in an intuitive and accessible manner. You can create clear, actionable reports based on your findings.
  • Variant Calling and Annotation:Experience with variant calling, annotation, and interpretation, including knowledge of SNPs, indels, and structural variants. You’re familiar with tools like GATK, ANNOVAR, and SnpEff for variant analysis.
  • Collaboration and Communication:Strong collaboration skills with the ability to work cross-functionally with geneticists, bioinformaticians, and clinical researchers. You can explain complex genetic data in a way that is understandable to both technical and non-technical audiences.

Educational Requirements:

  • Bachelor’s or Master’s degree in Genetics, Bioinformatics, Computational Biology, or a related field.Equivalent experience in genetic data analysis or bioinformatics is highly valued.
  • A Ph.D. in Genetics, Genomics, or Bioinformatics is a plus but not mandatory.
  • Certifications or additional coursework in bioinformatics tools, statistical genetics, or data science are advantageous.

Experience Requirements:

  • 3+ years of experience in genetic data analysis,with hands-on experience analyzing large-scale genomic datasets.
  • Proven experience with next-generation sequencing (NGS) data analysis, including whole-genome and exome sequencing.
  • Experience working on projects in clinical genetics, precision medicine, or genomics research is highly desirable.

Benefits

  • Health and Wellness: Comprehensive medical, dental, and vision insurance plans with low co-pays and premiums.
  • Paid Time Off: Competitive vacation, sick leave, and 20 paid holidays per year.
  • Work-Life Balance: Flexible work schedules and telecommuting options.
  • Professional Development: Opportunities for training, certification reimbursement, and career advancement programs.
  • Wellness Programs: Access to wellness programs, including gym memberships, health screenings, and mental health resources.
  • Life and Disability Insurance: Life insurance and short-term/long-term disability coverage.
  • Employee Assistance Program (EAP): Confidential counseling and support services for personal and professional challenges.
  • Tuition Reimbursement: Financial assistance for continuing education and professional development.
  • Community Engagement: Opportunities to participate in community service and volunteer activities.
  • Recognition Programs: Employee recognition programs to celebrate achievements and milestones.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.