Data Analyst

London
2 weeks ago
Create job alert

Data Analyst
The Data Analyst plays a key role on a large-scale infrastructure project, focusing on the development and ongoing maintenance of the project’s connected digital environment. The role involves analysing data to support decision-making and ensure project objectives are met.
You will work closely with information management and project controls teams, using data to improve project efficiency and support digital transformation initiatives.
You will join the FBRS (Ferrovial BAM Joint Venture) Information Management Team (IM), where your responsibilities will include ensuring systems integration, designing data modelling processes, and developing algorithms and predictive models to extract the data required by the project. You will also collaborate with teams across the project to support data analysis and share insights.
Candidates need to demonstrate outstanding attention to detail, self-motivation, and the ability to take initiative. They should also have strong Power BI expertise and experience using FME for data integration.
Key Responsibilities:

  • Collect, process, and analyse construction project data from multiple sources.
  • Support project teams with data quality checks.
  • Use FME to support information sharing and provide basic training on FME to project teams. Ensure project team members receive essential instruction on ETL tools (FME).
  • Drive digital transformation by identifying and implementing process and workflow efficiency improvements.
  • Support the integration of project systems with internal and client platforms.
  • Work closely with digitalisation and project controls teams to ensure accurate data flow and project insights.
  • Analyse datasets to identify trends, patterns and actionable insights.
  • Create and maintain Power BI dashboards, visualisations, and reports for executive and project stakeholders.
  • Work closely with the client, RSA delivery team and Project Information Manager to ensure system stability and improvement.
  • Ensure the project complies with relevant legislation, project standards, and client requirements.
    Key Skills and qualifications:
  • Strong organisational skills to manage multiple tasks, projects, and data streams effectively.
  • Ability to perform Quality Assurance checks according to the project and industry standards
  • Ability to coordinate and manage own workload support project delivery.
  • Familiarity with BIM, Python/R and UK construction data standards.
  • Familiarity with ETL tools like FME and GIS integrations.
  • Strong communication, stakeholder engagement, and problem-solving skills.
  • Experience in large infrastructure projects.
    Location: London
    Please note that this job description does not represent a comprehensive list of activities and employees may be requested to undertake other reasonable duties.
    The Ferrovial BAM Joint Venture (FBJV) has a successful history of delivering critical infrastructure for the UK on time and to budget together in joint venture partnership. They first worked together in 2010 as BFK, delivering three Crossrail contracts, including the longest stretch of tunnelling works between Royal Oak and Farringdon and Farringdon Station, the first central station to be completed on the Elizabeth Line. The team is also delivering the Silvertown Tunnel project together in East London and has been delivering excellence at each stage of HS2, such as Fusion JV for the Enabling Works packages, EKFB for the central Main Works Contract and now delivering the track infrastructure across the entire HS2 route.
    Seize the challenge. Move the world together! Innovative, creative, respectful, and diverse are some of the ways we describe ourselves. We are motivated by challenges, and we collaborate across our business units to move the world together. Your journey to a fulfilling career starts here!
    Ferrovial is an equal opportunity employer. We treat all jobs applications equally, regardless of gender, color, race, ethnicity, religion, national origin, age, disability, pregnancy, sexual orientation, gender identity and expression, covered veteran status or protected genetic information (each, a “Protected Class”), or any other protected class in accordance with applicable laws

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.