National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Fullstack Java Software Engineer III

JPMorgan Chase & Co.
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer (Maximo)

UNPAID VOLUNTEER - Technology Officers (Data Scientists/DevOps/Full Stack)

Full Stack Data Engineer

Machine Learning Engineer

Senior Data Scientist

Senior Data Scientist

We have an exciting and rewarding opportunity for you to take your software engineering career to the next level.

As a Fullstack Java Software Engineer III at JPMorgan Chase within the Corporate Sector Market Risk Technology Team, you serve as a seasoned member of an agile team to design and deliver trusted market-leading technology products in a secure, stable, and scalable way. You are responsible for building critical technology solutions for Limits Management. Market Risk is a product organization at JP Morgan, within the Risk Management Tower of Corporate Technology. The Market Risk group is responsible for calculating and reporting the risk of losses due to movements in market variables like prices and volatility. We are seeking a Software Engineer to join the Market Risk organization, which is currently going through an exciting transformation journey. This is a hands-on development role for someone able to design and build solutions while being nimble enough to pick up old and new technologies as we continue to transition the organization towards our future vision.

Job responsibilities

Executes software solutions, design, development, and technical troubleshooting with ability to think beyond routine or conventional approaches to build solutions or break down technical problems Creates secure and high-quality production code and maintains algorithms that run synchronously with appropriate systems Produces architecture and design artifacts for complex applications while being accountable for ensuring design constraints are met by software code development Gathers, analyzes, synthesizes, and develops visualizations and reporting from large, diverse data sets in service of continuous improvement of software applications and systems Proactively identifies hidden problems and patterns in data and uses these insights to drive improvements to coding hygiene and system architecture Contributes to software engineering communities of practice and events that explore new and emerging technologies Adds to team culture of diversity, equity, inclusion, and respect

Required qualifications, capabilities, and skills

Formal training or certification on software engineering concepts and proficient applied experience  Hands-on practical experience in system design, application development, testing, and operational stability Experience working in agile teams  Hands on knowledge of Java, React JS, Sprint Boot and Micro-services architecture Knowledge or experience working with relational databases and NoSQL databases, such as MongoDB Experience in developing, debugging, and maintaining code in a large corporate environment with one or more modern programming languages and database querying languages Overall knowledge of the Software Development Life Cycle Solid understanding of agile methodologies such as CI/CD, Application Resiliency, and Security Demonstrated knowledge of software applications and technical processes within a technical discipline (., cloud, artificial intelligence, machine learning, mobile,

Preferred qualifications, capabilities, and skills

Knowledge of the financial services industry and their IT systems Proficiency with API Test Automation using Blazemeter or JMeter  Understanding of Behavior Driven Development / Test Driven Development Familiarity with further modern front-end technologies Exposure to cloud technologies Knowledge of scaled agile approaches and lean practices
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.