Full Stack Software Engineer - Healthcare

Princeton Biopartners
Nottingham
1 month ago
Create job alert

Job Title:Full Stack Software Engineer - Healthcare


Industry:Biotechnology Research


Location:UK (Remote)


Princeton Biopartners is a best-in-class provider of integrated consulting solutions to the life sciences sector. Our mission is to improve the evidence base, accessibility, and dissemination of biomedical innovations through strategic advisory, software, and our venture fund. We pride ourselves on establishing long-term client relationships and are dedicated to addressing pain points via integrated and transformative projects. We are looking for a highly motivated and talented Full Stack Software Engineer to become our first full-time technology hire. 


As a Software Engineer, you will be critical in bridging the gap between strategy and implementation. You'll be integral in project execution that combines our strategic insights with tech-forward solutions, ensuring clients receive end-to-end products. You will be expected to bring intellectual curiosity, analytical rigor, creativity, and strategic thinking to every engagement.This is a cross-functional role, with high growth potential - the ideal candidate will be highly driven and relish the chance to wear multiple hats (Engineering, Product, Data).

 

Must Haves:

  • UK based:role is remote, but only open to candidates localized within the UK
  • STEM degree:from a top research-intensive university, preferably in London or Oxbridge
  • Engineering mindset:obsessed with building robust software aligned with best practices
  • Comfortable client facing:as needed to gather requirements and feedback
  • Product-minded:high degree of ownership and deeply invested in the user experience
  • Highly curious:comfortable working through ambiguity with analytical rigor
  • Independent:self-starter, growth mindset, comfortable with limited supervision
  • Efficient:value pragmatism over idealism (efficiently arrive at 80-20 solutions)
  • Structured:thinker, problem solver, and communicator 


Key Responsibilities:

  • Design, develop, and maintain Web, Front End, and Data Visualization applications
  • Produce performant, well tested code that scales gracefully with more features, users, and data
  • Assist with deploying and embedding software products into consulting solutions
  • Understand the trade-offs between different engineering solutions
  • Write and maintain clear, concise documentation 


Technical Expertise: 

  • Previous experience in software engineering, preferably within the Life Sciences Sector
  • Strong grasp of computer science fundamentals: data structures and algorithms, complexity, object oriented design
  • Mastery of modern web technologies & Javascript is essential: React, CSS, Node, Angular, etc.
  • Proficient in at least one all purpose imperative language: Python (ideal), Java, C++, etc.
  • Familiar with modern DevOps / CloudOps best practices - test driven development, CI/CD, etc.  
  • Desirable: prior experience with Azure and NoSQL
  • Desirable: experience and interest in machine learning, data engineering, and data visualization

 

Cultural Fit:

  • Represent the firm in a professional manner and uphold its values and culture in all interactions
  • Entrepreneurial spirit & strong work ethic, demonstrating a drive to pursue new growth opportunities and lead strategic initiatives
  • Ensure confidentiality, honesty, transparency, and integrity in all business dealings while fostering a positive working environment of knowledge sharing, effective collaboration, and mutual support


Benefits:

  • Competitive compensation commensurate with experience
  • Unlimited annual leave 
  • Up to 15% performance-based bonus
  • Flexible working conditions and international travel
  • Budget for co-working space 
  • Professional development programs


We do not discriminate based upon race, religion, color, national origin, gender (including pregnancy, childbirth, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, or other applicable legally protected characteristics.

Related Jobs

View all jobs

Full Stack Software Engineer - Healthcare

Full Stack Software Engineer - Healthcare

Full Stack Software Engineer - Healthcare

Principal Software Engineer

Software Engineer

Technical Lead - Software Engineer (Full Stack) Bristol

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.

Career Paths in Machine Learning: From Entry-Level Roles to Leadership and Beyond

Machine learning has rapidly transformed from an academic pursuit to a cornerstone of modern technology, fueling innovations in healthcare, finance, retail, cybersecurity, and virtually every industry imaginable. From predictive analytics and computer vision to deep learning models that power personalisation algorithms, machine learning (ML) is reshaping business strategies and creating new economic opportunities. As demand for ML expertise continues to outstrip supply, the UK has become a vibrant hub for machine learning research, entrepreneurship, and corporate adoption. Whether you’re just starting out or have experience in data science, software development, or adjacent fields, there has never been a better time to pursue a career in machine learning. In this article, we will explore: The growing importance of machine learning in the UK Entry-level roles that can kick-start your ML career The skills and qualifications you’ll need to succeed Mid-level and advanced positions, including leadership tracks Tips for job seekers on www.machinelearningjobs.co.uk By the end, you’ll have a clear view of how to build, grow, and lead in one of the most exciting fields in modern technology.