Founding Data Engineer

Go Places
London
1 year ago
Applications closed

Related Jobs

View all jobs

Remote Founding Data Engineer - Real-Time AI Pipelines

Data Engineer Founding Role...

Senior Scientific Data Engineer, Data Platform

MLOps Engineer

Founding Machine Learning Engineer

Founding Machine Learning Engineer

Position overview:

We are seeking an experienced and innovative data engineer to be the first hire on our data team. This is an exciting opportunity to build our data capabilities from the ground up. As the first Data engineer, you will be responsible for shaping the data strategy, designing the data architecture, and driving data-driven decision-making for the company. You will work closely with the business founders, Product and Operations function, leveraging your expertise in data analysis, machine learning, and statistics to unlock the potential of our data.


Company overview:

At Go Places, we're not just simplifying the world of Social Commerce – we're revolutionising it, reshaping how brands thrive in the era of socially enabled transactions. We've curated a portfolio of exceptional brands, unlocking their potential for Social Commerce revenue growth. We provide an end-to-end solution that sees us manage everything from logistics and forecasting to affiliate management and Live Shopping. With a blend of unparalleled experience, expertise, and state-of-the-art technology, we're changing the way brands think about the highest growth channel in E-commerce.


Unique responsibility:

  • Design, build and maintain the unique data model (deep learning model) for analysing and predicting shopping behaviour on social medias (like TikTok)
  • Iteratively and long term improve accuracy of this model in order to have the best predictive model for social commerce in the world


Key Responsibilities:

  • Support the ongoing development of our data governance, BI tools and technologies
  • Analyse large datasets to extract actionable insights, trends, and patterns
  • Design, implement, and optimise machine learning models to solve business problems
  • Develop and maintain data pipelines, ensuring data integrity and quality
  • Collaborate with stakeholders to understand business objectives and translate them into data science projects
  • Collaborate with developers to define what data we need to gather and how
  • Perform statistical analyses and hypothesis testing to validate findings
  • Create data visualisations, dashboards, and reports to communicate findings effectively
  • Stay current with industry trends, tools, and techniques in data science and machine learning


Requirements:

  • Bachelor’s degree in Computer Science, Mathematics, Statistics or other relevant field
  • Strong skills in statistical analysis and machine learning
  • Proficiency in Python, R, SQL, and data manipulation tools
  • Experience with data visualisation tools such as Quicksight, Tableau, Apache Superset or Power BI
  • Demonstrated leadership and self-direction. Willingness to both teach others and learn new techniques
  • Comfortable working in a fast paced, ambiguous and high growth environment
  • Willingness to explore, test and use the latest AI improvements and models. Introduce them then in the company in order to increase the performance


What We Offer:

  • Competitive salary and benefits package.
  • 25 days holiday + your birthday off
  • Opportunity to work with cutting-edge technology and be the Founding member of the Data Science team.
  • A creative and collaborative work environment.
  • Significant impact on the company’s data and technology direction
  • The chance to work at an early-stage, fast growing start-up backed by some of Europe’s leading Venture Capital funds
  • The chance to grow with the company and to build and manage a larger data team in the future
  • Flexible working arrangements (3 days a week in our London office)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.