Founding Data Engineer

Go Places
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer Founding Role...

Senior Scientific Data Engineer, Data Platform

Founding Machine Learning Engineer

Founding Lead Machine Learning Engineer

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Position overview:

We are seeking an experienced and innovative data engineer to be the first hire on our data team. This is an exciting opportunity to build our data capabilities from the ground up. As the first Data engineer, you will be responsible for shaping the data strategy, designing the data architecture, and driving data-driven decision-making for the company. You will work closely with the business founders, Product and Operations function, leveraging your expertise in data analysis, machine learning, and statistics to unlock the potential of our data.


Company overview:

At Go Places, we're not just simplifying the world of Social Commerce – we're revolutionising it, reshaping how brands thrive in the era of socially enabled transactions. We've curated a portfolio of exceptional brands, unlocking their potential for Social Commerce revenue growth. We provide an end-to-end solution that sees us manage everything from logistics and forecasting to affiliate management and Live Shopping. With a blend of unparalleled experience, expertise, and state-of-the-art technology, we're changing the way brands think about the highest growth channel in E-commerce.


Unique responsibility:

  • Design, build and maintain the unique data model (deep learning model) for analysing and predicting shopping behaviour on social medias (like TikTok)
  • Iteratively and long term improve accuracy of this model in order to have the best predictive model for social commerce in the world


Key Responsibilities:

  • Support the ongoing development of our data governance, BI tools and technologies
  • Analyse large datasets to extract actionable insights, trends, and patterns
  • Design, implement, and optimise machine learning models to solve business problems
  • Develop and maintain data pipelines, ensuring data integrity and quality
  • Collaborate with stakeholders to understand business objectives and translate them into data science projects
  • Collaborate with developers to define what data we need to gather and how
  • Perform statistical analyses and hypothesis testing to validate findings
  • Create data visualisations, dashboards, and reports to communicate findings effectively
  • Stay current with industry trends, tools, and techniques in data science and machine learning


Requirements:

  • Bachelor’s degree in Computer Science, Mathematics, Statistics or other relevant field
  • Strong skills in statistical analysis and machine learning
  • Proficiency in Python, R, SQL, and data manipulation tools
  • Experience with data visualisation tools such as Quicksight, Tableau, Apache Superset or Power BI
  • Demonstrated leadership and self-direction. Willingness to both teach others and learn new techniques
  • Comfortable working in a fast paced, ambiguous and high growth environment
  • Willingness to explore, test and use the latest AI improvements and models. Introduce them then in the company in order to increase the performance


What We Offer:

  • Competitive salary and benefits package.
  • 25 days holiday + your birthday off
  • Opportunity to work with cutting-edge technology and be the Founding member of the Data Science team.
  • A creative and collaborative work environment.
  • Significant impact on the company’s data and technology direction
  • The chance to work at an early-stage, fast growing start-up backed by some of Europe’s leading Venture Capital funds
  • The chance to grow with the company and to build and manage a larger data team in the future
  • Flexible working arrangements (3 days a week in our London office)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.