Financial Market Risk Manager- Based in Dubai

Warner Scott Recruitment
London
3 months ago
Applications closed

Related Jobs

View all jobs

Forensic Financial Data Analyst (Assistant Manager)

Technology Advisory - IT Strategy and Architecture - Managers/Associate Partners

Quality Engineer - Hometrack

Java Spark Developer

Chief Financial Officer (CFO) – London (Hybrid/Remote Available)

Head of Price Management

Role & Responsibilities

As Manager within the Financial Risk Management (“FRM”) Team your role involves developing and implementing risk solutions for financial institutions clients with a focus on market risk and liquidity risk.

Project and Team Related

  • Manage multiple FRM projects and ensure all engagements are planned and delivered within budget and on time
  • Own and implement initiatives around market and liquidity risks
  • Manage teams as well as senior client stakeholders and be responsible for delivering high quality results and generating effective and impactful solutions
  • Play a key role in the development of less experienced staff through mentoring, training and advising
  • Remain current on new developments in Risk advisory services capabilities and financial industry knowledge.

Business Development

  • Establish, maintain and strength internal and external relationships
  • Identify possible opportunities and direct purist for new client opportunities
  • Draw on your knowledge and experience to create practical and innovative insights for clients


The Individual

  • Thorough understanding of Market Risk and ideally, Liquidity Risk
  • Experience in Quantitative Analytics, Market Risk Models including VaR, FRTB, IRRBB, CVA
  • Experience in Liquidity management including liquidity gap, ALM, FTP, ILAAP
  • Experience with risk models development and validation
  • Good understanding of Spot and Derivative markets operations for equities, interest rate, credit, commodities and foreign exchange products; Risk management (hedging strategies) and valuation aspects of the same
  • Prior experience in Financial Modeling
  • Good understanding of local and international regulatory requirements including Basel and CBUAE guidelines
  • Strong analytical and problem-solving skills

Prior experiences in managing and motivating a team in risk related areas, with clear leadership in market and liquidity risks

Strong ability to map client business requirements and convert the same to a viable business proposition

  • Exposure to business development in consulting (Pre-sales support, proposals, RFP responses)
  • Strong communication skills with client facing experience.
  • Ability to work under pressure and manage multiple projects at a time
  • Demonstrate integrity, values, principles, and work ethic and lead by example


Qualifications

As a minimum a bachelor’s degree in a relevant field including Finance, Financial Engineering, Economics, Applied Mathematics or similar.

7+years of strong financial risk management /Quantitative analysis experience within a financial institutions or Consultancy/big 4 firms

Professional certification in FRM, PRM, CFA is recommended but not mandatory

Aptitude for quantitative analysis and strong numerical skills with evidence of advanced financial modeling skills

Experience in analytical and risk management tools/systems (e.g. Python, R, SAS, MATLAB, Calypso, Murex, etc.)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.