Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Financial Market Risk Manager- Based in Dubai

Warner Scott Recruitment
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer - Market Intelligence

Senior Data Engineer - Market Intelligence

Market Data Analyst

Senior Data Scientist

Senior Data Scientist

Alpha Data Services – Data Analyst, Assistant Vice President

Role & Responsibilities

As Manager within the Financial Risk Management (“FRM”) Team your role involves developing and implementing risk solutions for financial institutions clients with a focus on market risk and liquidity risk.

Project and Team Related

  • Manage multiple FRM projects and ensure all engagements are planned and delivered within budget and on time
  • Own and implement initiatives around market and liquidity risks
  • Manage teams as well as senior client stakeholders and be responsible for delivering high quality results and generating effective and impactful solutions
  • Play a key role in the development of less experienced staff through mentoring, training and advising
  • Remain current on new developments in Risk advisory services capabilities and financial industry knowledge.

Business Development

  • Establish, maintain and strength internal and external relationships
  • Identify possible opportunities and direct purist for new client opportunities
  • Draw on your knowledge and experience to create practical and innovative insights for clients


The Individual

  • Thorough understanding of Market Risk and ideally, Liquidity Risk
  • Experience in Quantitative Analytics, Market Risk Models including VaR, FRTB, IRRBB, CVA
  • Experience in Liquidity management including liquidity gap, ALM, FTP, ILAAP
  • Experience with risk models development and validation
  • Good understanding of Spot and Derivative markets operations for equities, interest rate, credit, commodities and foreign exchange products; Risk management (hedging strategies) and valuation aspects of the same
  • Prior experience in Financial Modeling
  • Good understanding of local and international regulatory requirements including Basel and CBUAE guidelines
  • Strong analytical and problem-solving skills

Prior experiences in managing and motivating a team in risk related areas, with clear leadership in market and liquidity risks

Strong ability to map client business requirements and convert the same to a viable business proposition

  • Exposure to business development in consulting (Pre-sales support, proposals, RFP responses)
  • Strong communication skills with client facing experience.
  • Ability to work under pressure and manage multiple projects at a time
  • Demonstrate integrity, values, principles, and work ethic and lead by example


Qualifications

As a minimum a bachelor’s degree in a relevant field including Finance, Financial Engineering, Economics, Applied Mathematics or similar.

7+years of strong financial risk management /Quantitative analysis experience within a financial institutions or Consultancy/big 4 firms

Professional certification in FRM, PRM, CFA is recommended but not mandatory

Aptitude for quantitative analysis and strong numerical skills with evidence of advanced financial modeling skills

Experience in analytical and risk management tools/systems (e.g. Python, R, SAS, MATLAB, Calypso, Murex, etc.)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.