Financial Data Analyst

Harnham
London
5 days ago
Create job alert

Financial Data Analyst – Private Equity (Data & Analytics Team)

London - 4 days in-office

Up to £75,000


Join a global private equity leader across secondary markets. A niche but fast-growing space with complex data challenges and huge strategic importance.


The Company

This firm is investing heavily in its data and analytics capabilities, with a newly established team spearheading the build of scalable tools and platforms to support better, faster investment decisions. If you're passionate about creating order from chaos, building impactful tools, and making data matter, this role offers a rare opportunity to shape a data function from the ground up.


Key Responsibilities

  • Build and maintain Power BI dashboards to track portfolio performance, risk, and cash flows, translating raw data into clear insights.
  • Partner with Data Engineering to validate pipelines, ensure data quality, and automate reporting processes.
  • Deliver interactive reports that support fund analytics, portfolio oversight, and executive decision-making.
  • Handle ad hoc data requests and investigate anomalies, highlighting key trends and issues.
  • Collaborate with a Data Steward to define and enforce data management and reconciliation standards.
  • Document workflows and promote best practices for consistent, scalable analytics.
  • Prepare clear, data-driven presentations for senior stakeholders and investment committees.


Expertise & Qualifications

  • Strong experience building dashboards and reports with Power BI, Qlik, or similar tools
  • Strong Excel skills, including pivot tables and Power Query
  • Solid understanding of data quality practices such as validation, exception reporting, and automation
  • Clear communicator with the ability to work across technical and non-technical teams
  • Exposure to financial services or private equity is a plus
  • Familiarity with Python, Snowflake, or dbt is beneficial but not required


Why Join?

  • Greenfield opportunity, help build the firm’s internal BI platform from scratch
  • High-impact, visible role in a firm committed to data-driven transformation
  • A genuinely collaborative team with a bias for action and iteration, not perfection
  • Strong support from leadership and investment teams who want better, faster, cleaner data

Related Jobs

View all jobs

Financial Data Analyst

Data Analyst

Graduate Data Analyst - Leeds

Data Analyst

Data Analyst

ERP Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.