Enterprise Account Executive

Orama Solutions
London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst - Fintech SaaS Game Changer.

Practice Lead - Data Science_ UK

Senior Data Engineer — Enterprise Data Platform

Senior Data Engineer

Data Analyst

Data Analyst

Orama Solutions are proud to be partnered with an Open Source Data platform flying high after a $30m+ total funding. The product leverages AI and Machine Learning to revolutionise how we utilize data.


The Role

The role is a fully remote Enterprise Account Executive position with a New Business focus selling a Data platform across EMEA.


Company Highlights

  • 300% ARR growth for consecutive years closing last year on $10m ARR.
  • £30m Series A, gearing up for a Series B round.
  • 100 inbound leads per month coming into the sales org.
  • Every ramped rep meeting quota in year one. Top performer at 200%.
  • Hired Reps from leading reps from Astronomer, Databricks, Imply and Dremio.
  • CRO, CMO, BDR team, Presales and Customer Success in place.
  • Closed logo in the Fortune 10 list.
  • 50+ Enterprise customers (Figma, LinkedIn, Notion, PayPal, Riskified, Expedia, etc)
  • Co-Founders former foundational engineers for both Airbnb and LinkedIn.


Product

Metadata platform that drastically reduces cost of data catalogue maintenance by ONLY operating once triggered. This technology is a one stop shop as this data catalog provides solutions for data discovery, governance, lineage and observability!


Experience needed to apply

  • Multiple years of experience in selling Data products and platforms at the Enterprise level in the EMEA territory
  • A strong sales process and a startup mentality. Ideally Series A or B selling experience.
  • Closed Multiple six figure deals.
  • Rolodex of Data personas.
  • Successful track record of over achieving quota with past companies (100%+) for consecutive Financial Years.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.