Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Engineer: Data Science

Mayer Brown LLP
London
2 days ago
Create job alert
Overview

Engineer: Data Science The Engineer: Data Science is responsible for the design, development, and delivery of advanced analytics and AI solutions in support of the firm's Data and AI strategy. This role works closely with the data science team, IT engineers, and business teams to implement reliable, scalable solutions that deliver measurable business value. The Engineer applies experience in data science, AI methods, and modern engineering practices to build and deploy solutions in production environments. The role emphasizes delivery excellence - ensuring that solutions are practical, efficient, and compliant with the firm's standards for security, confidentiality, and governance. Working closely with data science, IT, and data teams, the Engineer translates complex concepts into practical solutions that support critical business outcomes. Hours: Standard hours are 9:30am to 5:30pm with flexibility in accordance with the needs of the business. Our current working from home policy allows for two days working from home, subject to business need. This policy is subject to change and does not form part of contractual terms. Given the global nature of this role, there is often the need for off-hours (e.g., late evening and/or early morning) conference calls or video conferences.


#J-18808-Ljbffr

Related Jobs

View all jobs

Engineer: Data Science

Engineer: Data Science

Principal Engineer – Data Science

Data Engineer Data Science/Java/Python/Unix

Lead R Engineer / Data Scientist - Integrated Pest Management & Soil Science

Lead R Engineer / Data Scientist - Integrated Pest Management & Soil Science

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.