Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Director - Head of AI - Audit Technology

KPMG
Sheffield
10 months ago
Applications closed

Related Jobs

View all jobs

Director of Software Engineering - Data Engineering,Chase UK

Director of Machine Learning & AI

Director Data Science

Director of AI Optimization and Productization - R&D Data Science & Digital Health

Director of Software Engineering - Data Engineering,Chase UK

Senior Director, AI and Machine Learning– Evinova

The Role

 

We’re looking for an experienced Head of AI to join the Audit technology team.

 

The individual in this role will be instrumental in transforming the audit function by leveraging AI technologies to streamline processes, enhance audit quality and provide valuable insights.

 

The individual will report to the Head of Analytics & AI.

 

Responsibilities

 

Development & implementation of an AI strategy for the UK audit business, working in collaboration with the other KPMG UK functions and the global Audit organisation. Lead from the front as a hands-on subject matter expert, architecting and crafting scalable solutions, and driving data excellence across the organisation. Collaborate with stakeholders and project managers to turn business goals into scalable technical solutions, delivering value for thousands of KPMG auditors. Oversee the AI model lifecycle, including training, monitoring and optimisation. Coach and mentor our team as we build production-grade data and machine learning solutions. Build and deploy end to end ML models and leverage metrics to support predictions, recommendations, search, and growth strategies. Develop and execute a product roadmap for AI applications in audit, in alignment with the overall business strategy. Ensure that AI solutions are built responsibly and ethically, aligned with KPMG’s Values. Effectively manage relationships with key technology alliance partners, ensuring value for money. Stay abreast of the latest AI and emerging technologies, proactively educating the business on the art of the possible and generating new ideas. Develop thought leadership in the application of AI within Audit, helping to strengthen KPMG’s brand.

 

Experience & skills

 

Bachelor’s degree in engineering, computer science or a related quantitative field. Minimum of 5 years of hands-on experience designing and implementing AI solutions at scale, with at least 3 years in a leadership role. Significant expertise in AI/ML fundamentals. Strong background in software engineering, data engineering and data platforms, with a track record of overseeing full-stack development and delivering production-grade solutions. Up-to-date knowledge of, and experience with, AI/ML technologies and their trends, including various libraries and tools (e.g. Azure AI/ML Studio, Azure OpenAI, Databricks, Python, langchain, Microsoft Semantic Kernel etc). Experience of implementing production-grade generative AI solutions, with knowledge of advanced generative AI concepts including prompt engineering, retrieval augmented generation, agents with skills/tools/functions, chains/planners, and LLM model evaluation. Knowledge of how products work, scale and perform. Expertise with cutting edge technologies such as transfer learning, unsupervised feature generation, meta-learning, generative text models, computer vision, sensor fusion, or reinforcement learning. Advanced data science and mathematical skills (e.g. PhD in computational modelling, machine learning, statistics, computer science). Experience with modern databases, cloud environments, and data ecosystems. Experience defining and leading large-scale projects with multiple stakeholders. Experience within a leadership role where you have proven success with building and maintaining teams.

 

People & Culture

 

Embrace and embed our culture ambition of high challenge, high support which is grounded in Our Values. Operate with a curious and sceptical mindset ensuring that this is embedded in your everyday work. Actively lead and embed a coaching culture to get the best out of others in an environment where everyone in the team feels empowered to speak up or challenge where appropriate. Be inclusive and embrace the opportunity to work with other teams within Audit and across the firm in an integrated way. Have a sense of community, purpose, and fun.

 

#LI-AB1

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.