Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Digital Audit - Senior Associate - Gen AI Pod

PwC
London
1 year ago
Applications closed

Related Jobs

View all jobs

Director - Principal Engineer, Digital R&D DP&TS Platform and Data Engineering

Computer Vision Tech Lead

Business Data Analyst (IT) / Freelance

Senior Manager, Data Engineering

People Systems & Data Analyst - Funding Circle

Audience & Campaign Data Analyst

The Role

 

At the GenAI Pod, we’re pushing the boundaries of what’s possible. As a Senior Associate in our GenAI Lab start-up, you will:

Pioneer the design, development, and deployment of production machine learning pipelines

Shape machine learning-enabled, Audit applications

Deliver high-quality code contributions to our evolving codebase

Monitor and review live production models

Lead and guide workstreams on projects within your specialisation

Mentor and manage junior engineers on impactful workstreams

Skills and Experience

A passionate data scientist, who has invested time in understanding Generative AI and experienced the power of LLM

Practical experience from industry and professional services in delivering significant and valuable advanced analytics projects and/or assets

Engagement of technical and senior stakeholders

Ability to manage and coach a team of data scientists

Delivery of projects on time and in budget for high profile clients

Understanding of requirements for software engineering and data governance in data science

We make extensive use of the following technologies in our team. We expect you to be fluent with using these tools and practices on a daily basis.

Bachelor's degree (or more) in computer science / Data Science or a related technical discipline

Experience in Natural Language Processing

Extensive experience with modern Deep Learning (PyTorch/TensorFlow)

Experience with any of the following NLP tasks - named entity recognition, intelligent document processing, website parsing & classification, sentiment analysis, information retrieval, entity matching & linking, spelling correction

Strong knowledge of Mathematical Statistics, Algorithms & Data Structures, ML Theory

Strong knowledge of Python & SQL

Strong debugging skills

Git for version control

Azure / GCP for our cloud backend

Skills we’d like to hear about

Experience working with large data pipelines (using technologies such as Beam or Kafka)

Experience in LLMs using OpenAI, Gemini or open source models

Exposure to other programming languages (such as Java)

Experience of working on a project using agile concepts (such as working in sprints)

Familiarity with working in an MLOps environment.

Experience working with search engines (such as Elasticsearch)

)


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.