DevSecOps AWS Cloud Engineer

A1X
Sheffield
1 month ago
Applications closed

Related Jobs

View all jobs

Technical Architect

Data Scientist

Data Architect

Senior Analytics Engineer

Senior Software Developer

Solutions Consultant

Location: Remote (Europe)

Job Type: Full-time, 12-month contract with an initial 3-month probationary period (possibly leading to a permanent position)

Compensation: Highly competitive, based on experience


Designing, deploying and refining scalable, performant cloud infrastructure as code.

Shifting left and right to bake in world-class security, testing and observability from day one.

Seeing opportunity in cryptocurrency and financial disruption.

Taking ownership and collaborating for greatness.

If these match your passion, excitement and skills, let’s talk!


We are a small, proprietary trading firm that leverages cutting-edge technology to excel in cryptocurrency derivatives markets, currently focused on the first iteration of a real-time, cloud-based quantitative analysis pipeline that produces price & volatility forecasts and optimises our quoting strategy for our market-making activities.


As a DevSecOps AWS Cloud Engineer, you’ll take the lead in designing, implementing, and managing the infrastructure that powers our trading. This requires proven excellence in combining, configuring, automating and securing the AWS resources that underlie resilient, secure and performant applications, the pipelines that build, test and deploy them, and the auxiliary systems that support them.


This role’s core responsibility is empowering our team with infrastructure, standards and processes that streamline and accelerate the Software Development Life Cycle (SDLC), enhance collaboration, whilst securing our data and systems.


In this role, you will work closely with Engineering and QA teams to ensure the reliability, security, scalability and automation of core systems, and the development of auxiliary systems such as health monitoring dashboards, centralized logging and metrics systems, and notifications.


Key Responsibilities

As a DevSecOps AWS Cloud Engineer, your key responsibilities include to:

  • Collaborate with Engineering and QA to design and automate secure, scalable, performant infrastructure and environments that enables running and testing low-latency, reliable trading applications
  • Maintain and standardise core DevOps systems, such as version control, CI/CD, configuration management, IaC and rollback mechanisms to streamline infrastructure provisioning, setup and SDLC
  • Automate our security posture at every stage of SDLC with AST tools, security policies, monitoring, configuration and compliance to meet industry standards
  • Build dashboards, automatic notifications, and other health and security monitoring systems to ensure rapid response and resolution of critical, performance and security issues that compromise our trading
  • Develop security and infrastructure failure incident response playbooks, and lead remediation after incidents
  • Take proactive ownership of cloud infrastructure maintenance and issues, from root cause analysis to resolution
  • Drive the adoption of best practices for secure, consistent and efficient development across the organization
  • Work across teams to align and deliver automated infrastructure that meets business needs whilst improving quality of both our output and the team’s quality of life
  • Document and ensure clear communication of architecture, processes, and best practices to the team
  • Establish and monitor appropriate metrics and KPIs to facilitate data-driven feedback and improvement


Key Qualifications

  • BSc or MSc in Computer Science, Information Security, or a related STEM field
  • 3+ years in DevOps/DevSecOps, with 2+ years working in hybrid or cloud-native AWS environments
  • Proven AWS expertise, with at least one of the following (or equivalent): AWS Certified DevOps Engineer – Professional, AWS Certified Solutions Architect – Professional
  • Proven expertise and experience in automating security in SDLC and following recognised standards, guidelines and references (NIST, OWASP, CWEs, CVEs). Putting the Sec in DevSecOps.
  • Deep conceptual knowledge of CI/CD pipelines, observability tools, IaC, version control and SDLC automation in general
  • Strong understanding of Linux, especially AL2023, and Docker containerization
  • Extensive scripting experience (Shell, Python etc.)


Preferred Skills

  • Additional AWS certifications, such as: AWS Certified Security – Specialty, AWS Certified Advanced Networking – Specialty, AWS Certified Database – Specialty, AWS Certified Machine Learning – Specialty (for future projects)
  • Experience with AWS PrivateLink, DirectConnect, VPC Peering and Global Accelerator
  • Experience implementing Zero-Trust Network Models / Secure Access Service Edge (SASE) systems
  • Experience using Vector for observability pipelines
  • Windows Server administration skills
  • Proficiency with databases and messaging systems
  • Knowledge of financial systems and the collection and processing of time-series data
  • NodeJS skills to support with a ElasticBeanstalk project in maintenance


Why Join Us

  • Creatively apply and deepen your expertise at the cutting edge of the rapidly-emerging field of cryptocurrency.
  • Position yourself to contribute to innovative combinations of quantitative finance, ML, cloud-computing and trading strategy tailored to cryptocurrency trading.
  • Receive highly competitive pay, including bonuses, and the opportunity to join us permanently.
  • Be a fundamental force in shaping the infrastructure and systems of a growing trading firm.
  • Enjoy a flexible, collaborative and empowering fully remote work environment.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.