National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Software Developer

Stoke Gifford
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Software Developer

Software Developer

Big Data Engineer - DV Cleared

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Software Developer

The Role:

This is a highly varied role giving the successful candidate the opportunity to work across multiple projects and at all stages of the Software Development Lifecycle. Whilst focused on software development, this role also provides the opportunity to participate in software design at all levels. This will include work on:

Research & Development – Internally and externally funded research and development products investigating and developing low TRL technologies.
Product Development – Development and support of Synoptix products, primarily in the AI  and Computer Vision (object detection and track) domains.
Service Development – Development of Synoptix services, including our upcoming AI Assurance service offering.
Engineering Services – Delivery of engineering services on behalf of clients, assisting them in the development of their solutions.
Key Responsibilities:

Leading Software Development Projects

Act as part of a multidisciplinary team to develop products and services. This will include Systems Engineers, Security Engineers, Product Managers and others as required.
Support the wider team in project planning, requirements definition and requirements analysis.
Lead software design, development, testing, deployment and maintenance for a range of AI and Computer Vision products.
Providing Software Engineering Subject Matter (SME) Expertise

Act as part of multidisciplinary teams in delivering engineering services to Synoptix clients.
Provide technical documentation, briefings and presentations to internal and external stakeholders at all levels of seniority.
Skills Required:

Essential:

Creative problem-solving skills
Strong proficiency in Python with experience in C++ development
Experience with Linux operating systems (e.g. Red Hat, Ubuntu)
Experience working within a variety of development frameworks and practices e.g. DevOps, DevSecOps, SCRUM, MLOps, XP.
Experience with data analysis and manipulation tools (e.g. Pandas)
Experience of a broad section of the Software Development Lifecycle (SDLC) with specific focus on:

Design(Architecting, High-Level Design and Low-Level Design)
Development
Testing
Deployment & Maintenance
Experience of using the Unified Modelling Language
Excellent communication skills

Desirable:

Experience in the development of computer vision related products and services.
Experience with visual processing libraries; OpenCV, TensorFlow, PyTorch etc.
Experience operating as part of a multidisciplinary team
Experience in developing / mentoring junior staff
Experience developing and/or implementing reference architectures
Benefits:

Annual Company Bonus
25 Days holiday not including bank holidays with the option to buy/sell up to 5 days
Continuous professional development including incentives
Access to online Udemy training facility
Flexible working arrangements
Bike to work scheme
Electric car scheme
Private health care
Job well done scheme
Security Requirements:

Please note that due to the nature of our projects we can only accept sole UK national candidates who will need to be eligible to obtain UK Security Clearance

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.