Senior Software Developer

Stoke Gifford
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Software Developers (Full Stack)

Senior Backend Software Developer

Senior Full Stack Developer

Senior Software Engineer

Senior Java Developer - VP

Senior Software Engineer-Data Science

The Role:

This is a highly varied role giving the successful candidate the opportunity to work across multiple projects and at all stages of the Software Development Lifecycle. Whilst focused on software development, this role also provides the opportunity to participate in software design at all levels. This will include work on:

Research & Development – Internally and externally funded research and development products investigating and developing low TRL technologies.
Product Development – Development and support of Synoptix products, primarily in the AI  and Computer Vision (object detection and track) domains.
Service Development – Development of Synoptix services, including our upcoming AI Assurance service offering.
Engineering Services – Delivery of engineering services on behalf of clients, assisting them in the development of their solutions.
Key Responsibilities:

Leading Software Development Projects

Act as part of a multidisciplinary team to develop products and services. This will include Systems Engineers, Security Engineers, Product Managers and others as required.
Support the wider team in project planning, requirements definition and requirements analysis.
Lead software design, development, testing, deployment and maintenance for a range of AI and Computer Vision products.
Contribute to a culture of continuous improvement, identifying opportunities to enhance our processes, tooling, infrastructure and development frameworks.
Providing Software Engineering Subject Matter (SME) Expertise

Act as part of multidisciplinary teams in delivering engineering services to Synoptix clients.
Provide SME guidance to Synoptix clients on the architecture and design of their software solutions.
Provide technical documentation, briefings and presentations to internal and external stakeholders at all levels of seniority.
Managing and Mentoring Staff

Provide line management for more junior software developers / engineers.
Contribute to the generation of ‘learning pathways’ for Synoptix engineers, providing a structured approach to their professional development at all grades.
Skills Required:

Essential:

Strong proficiency in Python with experience in C++ development
Experience with Linux operating systems (e.g. Red Hat, Ubuntu)
Experience working within a variety of development frameworks and practices e.g. DevOps, DevSecOps, SCRUM, MLOps, XP.
Experience with data analysis and manipulation tools (e.g. Pandas)
Experience of a broad section of the Software Development Lifecycle (SDLC) with specific focus on:

Design(Architecting, High-Level Design and Low-Level Design)
Development
Testing
Deployment & Maintenance

Experience of using the Unified Modelling Language
Excellent communication skills
Desirable:

Experience in the development of computer vision related products and services.
Experience with visual processing libraries; OpenCV, TensorFlow, PyTorch etc.
Experience in personnel management
Experience operating as part of a multidisciplinary team
Experience developing and/or implementing reference architectures
Experience in the development of Test Harnesses
Benefits:

Annual Company Bonus
25 Days holiday not including bank holidays with the option to buy/sell up to 5 days
Continuous professional development including incentives
Access to online Udemy training facility
Flexible working arrangements
Bike to work scheme
Electric car scheme
Private health care
Job well done scheme
Security Requirements:

Please note that due to the nature of our projects we can only accept UK national candidates who will need to be eligible to obtain UK Security Clearance

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.