Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Software Developer

Stoke Gifford
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Consultant Data Scientist

Senior Consultant Data Scientist

Software Engineer (Leadership) - Machine Learning

Lead Data Engineer

Senior Search Data Engineer

Senior Data Engineer

Senior Software Developer

The Role:

This is a highly varied role giving the successful candidate the opportunity to work across multiple projects and at all stages of the Software Development Lifecycle. Whilst focused on software development, this role also provides the opportunity to participate in software design at all levels. This will include work on:

Research & Development – Internally and externally funded research and development products investigating and developing low TRL technologies.
Product Development – Development and support of Synoptix products, primarily in the AI  and Computer Vision (object detection and track) domains.
Service Development – Development of Synoptix services, including our upcoming AI Assurance service offering.
Engineering Services – Delivery of engineering services on behalf of clients, assisting them in the development of their solutions.
Key Responsibilities:

Leading Software Development Projects

Act as part of a multidisciplinary team to develop products and services. This will include Systems Engineers, Security Engineers, Product Managers and others as required.
Support the wider team in project planning, requirements definition and requirements analysis.
Lead software design, development, testing, deployment and maintenance for a range of AI and Computer Vision products.
Providing Software Engineering Subject Matter (SME) Expertise

Act as part of multidisciplinary teams in delivering engineering services to Synoptix clients.
Provide technical documentation, briefings and presentations to internal and external stakeholders at all levels of seniority.
Skills Required:

Essential:

Creative problem-solving skills
Strong proficiency in Python with experience in C++ development
Experience with Linux operating systems (e.g. Red Hat, Ubuntu)
Experience working within a variety of development frameworks and practices e.g. DevOps, DevSecOps, SCRUM, MLOps, XP.
Experience with data analysis and manipulation tools (e.g. Pandas)
Experience of a broad section of the Software Development Lifecycle (SDLC) with specific focus on:

Design(Architecting, High-Level Design and Low-Level Design)
Development
Testing
Deployment & Maintenance
Experience of using the Unified Modelling Language
Excellent communication skills

Desirable:

Experience in the development of computer vision related products and services.
Experience with visual processing libraries; OpenCV, TensorFlow, PyTorch etc.
Experience operating as part of a multidisciplinary team
Experience in developing / mentoring junior staff
Experience developing and/or implementing reference architectures
Benefits:

Annual Company Bonus
25 Days holiday not including bank holidays with the option to buy/sell up to 5 days
Continuous professional development including incentives
Access to online Udemy training facility
Flexible working arrangements
Bike to work scheme
Electric car scheme
Private health care
Job well done scheme
Security Requirements:

Please note that due to the nature of our projects we can only accept sole UK national candidates who will need to be eligible to obtain UK Security Clearance

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.