Demand Planner

Leeds ICD
1 week ago
Create job alert

Demand Forecasting Specialist

Arla Head Office, Leeds, LS10 1AB

Permanent, days-based role (Monday-Friday, 37.5 hours per week)

We are currently seeking a Demand Forecasting Specialist to join our team. This role will provide essential support to our Finnish market and colleagues, whilst working alongside our UK Demand Planning team.

What do we offer?

  • Competitive salary (salary discussed at application stage)

  • 26 days holiday & Bank Holidays

  • Hybrid & flexible working

  • Pension contribution matched up to 6%

  • 4 x annual salary life assurance

  • Free to use onsite Gym

  • Access to discounted products in our Staff Shop

  • People agenda commitment to training and development

  • Flexible Benefits- buy up to 5 days additional annual leave, reward gateway scheme- discounts with various retailers via my benefit platform.

  • Most importantly - Cheese hamper at Christmas!

    How will you make an impact?

    Reporting into the Demand Planning Manager in Finland, this role will play a pivotal part in improving planning efficiency through data analytics and advanced forecasting. Key responsibilities include data assessment, maintaining baseline forecasts, and applying machine learning for accurate forecasting. A deep understanding of demand patterns, product lifecycles, and market trends is essential.

    Further responsibilities include;

  • Maintain master data and planning parameters for demand planning, and ensure data completeness and quality.

  • Review automatic cleansing processes and ensure the final output (cleansed data) is completed in the system.

  • Generate and analyse historical demand performance reports, incorporating relevant actions into future forecasting. Provide initial baseline forecasts for phase-in/phase-out products.

  • Select and manage appropriate statistical models for demand segmentation, and run and adjust statistical baseline forecasts and advanced modelling.

  • Monitor and report on forecasting KPIs, and provide descriptive and diagnostic insights about previous cycle’s forecast performance.

    What will make you successful

    The ideal candidate will have;

  • Strong experience within demand planning and demand planning systems (Experience with SAP IBP is a strong advantage)

  • Excellent data and analytical skills

  • Experience within a fast-paced FMCG environment is preferrable.

  • Technical proficiency

  • Possesses strong collaboration, organisation and teamwork skills

    Would you like to join us?

    If you are enthusiastic about joining our team and meet the qualifications listed above, we would love to hear from you. Please apply as soon as possible as we will process applications on a continuous basis and close the recruitment once the right candidate is found.

    For additional information, please contact Olivia Pine, Talent Acquisition Partner at Arla Foods. The closing date for this position is the 21st April 2025 and only CV’s sent directly via the link will be considered

Related Jobs

View all jobs

Geospatial Data Engineer

VP, Strategy Analytics (Basé à London)

Databricks Data Engineer

Data Scientist

Data & Analytics Manager

Data Insight Analyst - SQL

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.