Databricks Data Engineer - Contract (Outside IR35) - Remote UK

Akkodis
5 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Azure Data Engineer - Insurance Firm – London – hybrid working

Data Engineer

Data Engineer

Senior Data Engineer

Databricks Data Engineer (Python, SQL, Databricks) Rate competitive - Contract6 months initially with a strong view to extend. Outside IR35 and you can work remotely anywhere within the UK. My client are looking to bring on a Databricks expert to join them and play a key role in the implementation on Databricks to help them accelerate this workstream.You must have Databricks exposure and used it significantly within an enterprise organisation, from a data engineering and operational perspective.Technically you'll have solid Python experience within data engineering/analysis and be a SQL expert. It would be a big bonus if you have Databricks notebooks too.This is a lead role where you will be expected to take the reigns on the implementation - Loads of stakeholder management involved, so you'll also be an extremely strong communicator.Email me in the first instance and send your up to date CV to (url removed) for immediate consideration - Looking for somebody to start late November. Modis International Ltd acts as an employment agency for permanent recruitment and an employment business for the supply of temporary workers in the UK. Modis Europe Ltd provide a variety of international solutions that connect clients to the best talent in the world. For all positions based in Switzerland, Modis Europe Ltd works with its licensed Swiss partner Accurity GmbH to ensure that candidate applications are handled in accordance with Swiss law. Both Modis International Ltd and Modis Europe Ltd are Equal Opportunities Employers. By applying for this role your details will be submitted to Modis International Ltd and/ or Modis Europe Ltd. Our Candidate Privacy Information Statement which explains how we will use your information is available on the Modis website

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.