Data Security Engineer

Bristol
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer (National Security)

Data Engineer National Security

Data Engineer (National Security)

DV-Cleared Defence & Security Data Engineer

DV-Cleared Defence & Security Data Engineer

Data Engineer (SC Cleared)

Data Security Engineer

Bristol / Edinburgh

Up to £95,000 + great benefits

This business is undergoing a huge technology transformation and are looking for a Data Security Engineer to work with the data teams to ensure that all customer data is secure. The business is making data engineering central to understanding the customer journey, so a the successful Data Security Engineer will be working closely with leadership in both the Cyber and Data teams. This business is going through a big technology transformation programme that is estimated to take 3 -5 years. The successful Data Security Engineer will be part of this journey and have great technical exposure and the ability to rapidly progress.

Data Security Engineer

Duties and Responsibilities

The successful Data Security Engineer will:

  • Supportthe development and implementation of comprehensive data security strategies, policies and procedures.

  • Work with the Enterprise Security Architect to design and deploy security architectures for data protection, including encryption, access controls and data masking

  • Manage data encryption solutions to ensure the confidentiality and integrity of sensitive data.

  • Collaborate across the Security Team to develop and deliver encryption key management processes and systems.

  • Ensure security across the Data & Analytics technology stack consists primarily of: Oracle tools, Snowflake, Postgres, various AWS Services (SageMaker, Lambda, Step Functions, DMS, S3 etc.) in the AWS Cloud.

    Data Security Engineer – Your Background

    The ideal Data Security Engineer will have:

  • Experience in a similar role, in both leadership and Knowledge

  • 3+ years of experience in a hands-on Cyber Security focused role, primarily in the data security domain.

  • A strong & demonstratable knowledge of security frameworks, standards and regulations (NIST, GDPR for example).

  • Familiarity with cloud security principles and experience working with cloud platforms such as AWS and Snowflake.

  • A clear and demonstratable understanding of data science principles and practices.

  • Any security focussed experience with the use of AI Tooling within data science is welcome

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.