Data Security Engineer

Bristol
3 days ago
Create job alert

Data Security Engineer

Bristol / Edinburgh

Up to £95,000 + great benefits

This business is undergoing a huge technology transformation and are looking for a Data Security Engineer to work with the data teams to ensure that all customer data is secure. The business is making data engineering central to understanding the customer journey, so a the successful Data Security Engineer will be working closely with leadership in both the Cyber and Data teams. This business is going through a big technology transformation programme that is estimated to take 3 -5 years. The successful Data Security Engineer will be part of this journey and have great technical exposure and the ability to rapidly progress.

Data Security Engineer

Duties and Responsibilities

The successful Data Security Engineer will:

  • Supportthe development and implementation of comprehensive data security strategies, policies and procedures.

  • Work with the Enterprise Security Architect to design and deploy security architectures for data protection, including encryption, access controls and data masking

  • Manage data encryption solutions to ensure the confidentiality and integrity of sensitive data.

  • Collaborate across the Security Team to develop and deliver encryption key management processes and systems.

  • Ensure security across the Data & Analytics technology stack consists primarily of: Oracle tools, Snowflake, Postgres, various AWS Services (SageMaker, Lambda, Step Functions, DMS, S3 etc.) in the AWS Cloud.

    Data Security Engineer – Your Background

    The ideal Data Security Engineer will have:

  • Experience in a similar role, in both leadership and Knowledge

  • 3+ years of experience in a hands-on Cyber Security focused role, primarily in the data security domain.

  • A strong & demonstratable knowledge of security frameworks, standards and regulations (NIST, GDPR for example).

  • Familiarity with cloud security principles and experience working with cloud platforms such as AWS and Snowflake.

  • A clear and demonstratable understanding of data science principles and practices.

  • Any security focussed experience with the use of AI Tooling within data science is welcome

Related Jobs

View all jobs

DV Cleared - Data Engineer - ELK & NiFi

DATA ENGINEER - SC CLEARED

Senior Data Engineer

Junior Data Engineer

Data Engineer / Analytics Engineer

▷ 3 Days Left: Machine Learning Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.