Data Scientist II -Platform & Partner Experience

Spotify
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Senior

Senior Data Scientist II

Senior Data Scientist II: GenAI & ML Solutions Lead

Senior Data Scientist II: GenAI & ML Solutions Lead

Senior Data Scientist II

Senior Data Scientist: AI Evaluation & Governance

Delivering the best Spotify experience possible. To as many people as possible. In as many moments as possible. That’s what the Experience team is all about. We use our deep understanding of consumer expectations to enrich the lives of millions of our users all over the world, bringing the music and audio they love to the devices, apps and platforms they use every day. We are looking for a Data Scientist to join our insights team in Platform & Partner Experiences to help us drive and support evidence-based decisions throughout Spotify’s product development process. Our team is responsible for Spotify’s consumer experiences such as desktop, TV, speakers and smartwatches and for delivering work alongside some of our biggest tech partners. Together with us you will study user behaviour, evaluate critical initiatives and experiment with new features to drive decisions that influence the way the world experiences music, podcasts and audiobooks.

What You’ll Do

You will collaborate with fellow Data Scientists and Data Engineers, and co-operate with cross-functional teams of product managers, engineers, designers and user researchers who are passionate about our consumer experience, to identify and answer key product questions via data. You will be a key partner in our work to build out and deliver innovative product features that create valuable and engaging listening moments in the daily lives of Spotify users. You will perform analysis on large sets of data to extract impactful insights about user behaviour and product usage that will help drive product decisions and guide our strategy. You will communicate insights and recommendations to stakeholders within your team and across Spotify.

Who You Are

You have relevant experience or a degree in statistics, mathematics, computer science, engineering, economics or another quantitative subject area. Previous experience in working as a Data Scientist for consumer-facing digital product development is strongly preferred. You have strong interpersonal skills and are a great stakeholder manager. You are expert in data visualisation and presentation, and can interpret information into clear actions and strategy.  You can tackle loosely defined problems and come up with relevant analytical approach and impactful insights. You have proficiency with Python, or similar programming languages, experience with Google BigQuery & expertise in SQL. You have hands-on knowledge of A/B testing methodologies and experimentation at scale, including application of this knowledge to digital products You enjoy sharpening questions and developing hypotheses, and can collaborate with non-Data Scientists to clarify assumptions and influence decisions. You have extensive experience using various analysis techniques, such as linear and logistic regression, significance testing, and statistical modeling. 

Where You’ll Be

This role will be located in Stockholm or London.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.