National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist II, Data Scientist II - AOP Team

Amazon
London
1 week ago
Create job alert

Job Description
Are you interested in applying your strong quantitative analysis and big data skills to world-changing problems? Are you interested in driving the development of methods, models and systems for capacity planning, transportation and fulfillment network? If so, then this is the job for you.

Our team is responsible for creating core analytics tech capabilities, platforms development and data engineering. We develop scalable analytics applications and research modeling to optimize operation processes. We standardize and optimize data sources and visualization efforts across geographies, builds up and maintains the online BI services and data mart. You will work with professional software development managers, data engineers, scientists, business intelligence engineers and product managers using rigorous quantitative approaches to ensure high quality data tech products for our customers around the world, including India, Australia, Brazil, Mexico, Singapore and Middle East.

Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of strategic models and automation tools fed by our massive amounts of available data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in emerging countries as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools.

Major responsibilities include:

· Translating business questions and concerns into specific analytical questions that can be answered with available data using BI tools; produce the required data when it is not available.
· Apply Statistical and Machine Learning methods to specific business problems and data.
· Create global standard metrics across regions and perform benchmark analysis.
· Ensure data quality throughout all stages of acquisition and processing, including such areas as data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc.
· Communicate proposals and results in a clear manner backed by data and coupled with actionable conclusions to drive business decisions.
· Collaborate with colleagues from multidisciplinary science, engineering and business backgrounds.
· Develop efficient data querying and modeling infrastructure.
· Manage your own process. Prioritize and execute on high impact projects, triage external requests, and ensure to deliver projects in time.
· Utilizing code (Python, R, Scala, etc.) for analyzing data and building statistical models.
BASIC QUALIFICATIONS

- 2+ years of data scientist experience

  • 3+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
  • 3+ years of machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience
  • Experience applying theoretical models in an applied environment
    PREFERRED QUALIFICATIONS

    - Experience in Python, Perl, or another scripting language
  • Experience in a ML or data scientist role with a large technology company

    Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.
    Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

    #J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist II, Regulatory, Intelligence, Safety and Compliance (RISC)

Data Scientist II, Payment Risk Machine Learning

Data Scientist II

Data Scientist II (Marketing Testing)

Data Scientist - Experimentation & Measurement

Data Scientist – Experimentation & Measurement

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.