Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Data Scientist – Grid Innovation Model Development (Energy Sector Experience Required)

GE Vernova Inc
Stafford
3 weeks ago
Applications closed

Related Jobs

View all jobs

PU Data Scientist

Principal Data Engineer

Senior Data Engineer

Data Scientist (VPI)

Principal Data Engineer

Principal Data Engineer

Job Description SummaryGE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver GE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver the electricity that is vital to health, safety, security, and improved quality of life. Are you excited at the opportunity to electrify and decarbonize the world?

We are seeking a highly skilled and results-driven Data Scientist - Validation to join our team, primarily focusing on validating AI/ML models for grid innovation applications. This role will involve rigorous testing, validation, and verification of AI/ML models with grid data to ensure they meet accuracy, performance, and operational standards within energy systems. Reporting to the AI leader in the CTO organization, the Data Scientist will collaborate closely with Grid Automation (GA) product lines, R&D teams, product management, and other GA functions.

The ideal candidate will have significant experience in the energy sector, specifically in energy systems and grid automation, or in related domains such as smart infrastructure (e.g., connected buildings, utilities) or industrial automation (e.g., SCADA, PLC systems, Industry 4.0). They should have a strong understanding of how to apply data science and data engineering techniques to develop, validate, and enhance AI/ML models within these complex and data-rich environments.Job Description

Essential Responsibilities:

  • Design and conduct experiments to test and validate AI/ML models in the context of energy systems and grid automation applications.
  • Establish clear validation frameworks to ensure models meet required performance standards and business objectives.
  • Establish test procedures to validate models with real and simulated grid data.
  • Analyze model performance against real-world data to ensure accuracy, reliability, and scalability.
  • Identify and address discrepancies between expected and actual model behavior, providing actionable insights to improve model performance.
  • Implement automated testing strategies and pipeline to streamline model validation processes.
  • Collaborate with Data Engineers and ML Engineers to improve data quality, enhance model performance, and ensure efficient deployment of validated models.
  • Ensure that validation processes adhere to data governance policies and industry standards.
  • Communicate validation results, insights, and recommendations clearly to stakeholders, including product managers and leadership teams.

Must-Have Requirements

  • PhD, Master’s, or Bachelor’s degree in Data Science, Computer Science, Electrical Engineering, or a related field with hands-on experience in model validation.
  • Significant experience working in the energy sector, particularly in energy systems, grid automation, or smart grid technologies.
  • Solid experience in validating AI/ML models, ensuring they meet business and technical requirements.
  • Strong knowledge of statistical techniques, model performance metrics, and validation methodologies for AI/ML models.
  • Proficiency in programming languages such as Python, R, orMATLAB.
  • Experience with data wrangling, feature engineering, and preparing datasets for model validation.
  • Familiarity with machine learning frameworks (e.g., TensorFlow, PyTorch, Scikit-learn) and model evaluation techniques.
  • Experience with cloud platforms (e.g., AWS, Azure, GCP) and deployment of models in cloud environments.
  • Experience with data visualization tools such as Tableau, Power BI, or similar to effectively present validation results and insights.

Nice-to-Have Requirements:

  • Familiarity with big data tools and technologies, such asHadoop, Kafka, and Spark.
  • Familiarity with data governance frameworks and validation standards in the energy sector.
  • Knowledge of distributed computing environments and model deployment at scale.
  • Strong communication skills, with the ability to clearly explain complex validation results to non-technical stakeholders.

At GE Vernova - Grid Automation, you will have the opportunity to work on cutting-edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.

AboutGEVGrid Solutions:

At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to full fill the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotable role in integrating Renewables onto the grid to drive to carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable Grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.

Why we come to work:

At GEV, our engineers are always up for the challenge - and we’re always driven to find the best solution. Our projects are unique and interesting, and you’ll need to bring a solution-focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you’ll be exposed to game-changing, diverse projects that truly allow you to play your part in the energy transition.

What we offer:

A key role in a dynamic, international working environment with a large degree of flexibility of work agreements

Competitive benefits, and great development opportunities - including private health insurance.

Additional Information

Relocation Assistance Provided:No


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.