Data Scientist

Uk Risk Solutions Limited
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Measurement Specialist

About the business: LexisNexis Risk Solutions is the essential partner in the assessment of risk. Within our Business Services vertical, we offer a multitude of solutions focused on helping businesses of all sizes drive higher revenue growth, maximize operational efficiencies, and improve customer experience. Our solutions help our customers solve difficult problems in the areas of Anti-Money Laundering/Counter Terrorist Financing, Identity Authentication & Verification, Fraud and Credit Risk mitigation, and Customer Data Management. You can learn more about LexisNexis Risk at the link below:LexisNexis Risk.


About the team: You will be part of a team that uses global data from the largest real-time fraud detection platform to craft solutions for our enterprise customers.


About the role: Your experience with data analysis, statistical modelling, and machine learning will lead to immediate real-world impact in the form of lower customer friction, reduced fraud losses, and, as a result, increased customer profitability. You’ll leverage a real-time platform analyzing billions of transactions per month for some of the largest companies operating in Financial Services, Insurance, e-Commerce, and On-Demand Services. These tools will allow you to attain a unique perspective of the Internet, and every persona connected to it. On top of driving innovation projects, you’ll be continually collaborating with internal product and engineering teams, customer-facing account teams, and external business leaders and risk managers. The comprehensive models you build will go head-to-head against some of the most motivated attackers in the world to protect billions in revenue.


Responsibilities:

  • Scoping, developing, and implementing machine learning or rule-based models following best practice, to banking model governance standards.
  • Using your strong knowledge of SQL and Python plus quantitative skills to define features that capture evolving fraudster behaviours.
  • Develop internal tools to streamline the model training pipeline and analytics workflows.
  • Applying your curiosity and problem-solving skills to transform uncertainty into value-add opportunities.
  • Using your strong attention to detail and ability to craft a story through data, delivering industry-leading presentations for external and executive audiences.
  • Building an extensive knowledge of cybercrime – account takeover, scams, social engineering, Card Not Present (CNP) fraud, money laundering and mule fraud etc.
  • Employing your multi-tasking and prioritization skills to excel in a fast-paced environment with frequently changing priorities.


Requirements:

  • Experience in a data science role, ideally within the fraud, risk, or payments domain.
  • Proficiency in Python and SQL (BI tools such as SuperSet, Tableau or PowerBI is a bonus).
  • Hands-on experience in machine learning model development, evaluation, and production deployment, with familiarity in MLOps principles to build scalable and standardized workflows and implement effective ML monitoring systems.
  • Proven ability to create polished presentations and effectively communicate insights to customers with attention to detail.
  • Extensive multi-tasking and prioritization skills. Needs to excel in a fast-paced environment with frequently changing priorities.


At LexisNexis Risk Solutions, having diverse employees with different perspectives is key to creating innovative new products for our global customers. We have 30 diversity employee networks globally and prioritize inclusive leadership and equitable processes as part of our culture. Our aim is for every employee to be the best version of themselves. We actively welcome applications from candidates of diverse backgrounds and underrepresented groups. We are committed to providing a fair and accessible hiring process. If you have a disability or other need that requires accommodation or adjustment, please let us know by completing our Applicant Request Support Form:Request Support Form.


Please read ourCandidate Privacy Policy.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.