Data Science Lead

Graduate Recruitment Bureau
Brighton
9 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Data Analytics & Data Science Lead

Senior Data Scientist

Machine Learning and AI Engineering Lead

Vice President Data Science

Head of Analytics & Data Science

A leading eCommerce business, known for their history of driving innovation and industry disruption.

Take the next step in your career and join one of the world's largest, pioneering and award-winning e-commerce retailers, then look no further than this exciting role as a Data Science Lead.

With a superb progression path, inclusive environment and "no idea is a bad idea" philosophy, this opportunity really is one like none other.

**The Role**

This position comes with a high level of autonomy in how you set the approach of the team on specific business problems, and how to seek out innovative solutions.

You will lead the report to the Director of data, while leading the data science team and ensuring their full value is unlocked. The expectation is that you identify, manage and supervise projects that touch all areas of the business - from marketing to supply chain - elevating the level of sophistication of analytics and modelling.

You’ll be collaborating with a range of stakeholders including those in online merchandising, where you will be thinking about product recommendation & optimising space on the website and those in trading and buying, as you look to reflect pricing policies and promotions and understand cannibalisation. When working with members of the Customer and Marketing world, you’ll be likely to use a combination of Market Mix Modelling & Attribution Modelling techniques.

The successful candidate will have:

Experience leading projects involving large datasets and complex statistical techniques Working with stakeholders and able to communicate effectively with non-technical persons The ability to translate complex business problems into achievable data science projects A deep understanding of key statistical concepts and machine learning techniques to solve complex problems. Familiarity with Cloud computing and experience with overseeing end-to-end development of data science projects in a Cloud environment. A strong academic record including a postgraduate degree in mathematics, statistics, or the sciences

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.