Data Science Intern

Hirist
Newcastle upon Tyne
5 days ago
Create job alert

Summer Internship – Data Science (Beginner to Intermediate Levels Welcome)

Duration:3 Months | Remote | Flexible Start

Hiring Partner:HIRIST – IT Recruitment Partner

Client:Reputed IT Company (Name confidential)


Are you passionate about data and eager to apply your skills in real-world projects? Whether you're just starting out or already have some hands-on experience — this is a chance to be part of alive data science teamsolving actual business problems.


HiRIST is hiringData Science Internson behalf of one of our IT clients for asummer internship programfocused on building real solutions, not simulations or training demos.


What You’ll Work On:

• Collaborate with senior data scientists onlive projects

• Assist incleaning, organizing, and analyzing datasets

• Contribute tofeature engineeringfor machine learning models

• Learn howA/B testsand data experiments are designed and analyzed

• Help builddashboards or visualizationsthat support business decisions


🔍Who Should Apply:

This internship is ideal for:

• Students or recent grads fromany STEM or analytical background

• Candidates who areself-taught in Python, SQL, or basic data analysis

• Beginners who havedone personal projects, academic work, oronline coursework

• Intermediate learners looking to gainreal project experience

Youdon’t need to be an expert— you just need to be willing to contribute, learn fast, and work hard on real tasks under mentorship.


🧠Must-Have Skills:

• Basic knowledge ofPythonand/orSQL

• Curiosity and willingness to work with data

• Familiarity with any one:Excel, Pandas, Numpy, or visualization tools

• Good communication and time management skills


🌟Nice-to-Have (But Not Required):

• Experience withdata cleaning, modeling, or dashboards

• Understanding ofstatistics or A/B testing

• GitHub or portfolio of data projects (even academic ones)


🎁Perks & Benefits:

1:1 mentorshipfrom a senior data scientist on the same project

• Exposure toreal industry-level projects

Internship Certificateat the end of the program

Letter of Recommendationbased on performance

Stipend opportunityfor selected interns (based on skill level and contributions)


🔎Selection Process:

1. Resume Screening (emphasis on interest and motivation)

2. Basic Aptitude/Data Task (suitable for beginners too)

3. Friendly Interview with Mentor/Manager

4. Final Selection & Onboarding via HiRIST


📝Apply If You:

• Are available for 4-12 weeks

• Can commit at least15–20 hours/week

• Are excited to work in areal tech team, not a training bootcamp

• Want to addreal business project experienceto your resume


📩Ready to Get Started?

Apply with yourresume + any portfolio link or project sample (optional).


HiRIST– Connecting the right talent with the right opportunity.

Related Jobs

View all jobs

Data Science Intern

Data Science Intern

Data Science Intern

Data Science Intern

Data Science Intern

Senior Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.