National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Science Analyst (Graduate 2024/25)

Borehamwood
2 weeks ago
Create job alert

Data Science Analysts (Graduates 2024 or 2025) MSc in Physics or Maths preferred
£30,000 - £35,000 Negotiable DoE
Hybrid working 3 days in Borehamwood- must have driving licence as offices are not accessible by public transport
Job Reference J12966

This client is unable to consider any visas including Post Graduate Work Visas unfortunately.

Safestore is the UK's largest self-storage group, and part of the FTSE 250. We believe that engaged colleagues, who feel valued by our business, are the foundation of our customer-focused culture. We know our people as individuals, and show respect for each other, enabling everyone to have a voice so that they can bring their full, unique selves to work. We are exceptionally proud that, in 2021 we were awarded the prestigious 'Investors in People' Platinum accreditation, placing us in the top 2% of accredited organisations in the UK and have maintained this accreditation ever since.

Unrivalled opportunity for career development and to positively influence the business

Key Accountabilities
• Partner with other support departments to discover and deliver projects that use data and statistics in identifying trends and optimisation to support decision making
• Perform statistical analysis on our customer base and formulate either pricing strategies or commercial strategies to optimise revenue.
• Deliver insights to drive business decisions and design algorithms that can be used to improve either our pricing or operational strategy.
• Develop an excellent understanding of relevant internal and external data sources.
• Work together with other departments and stakeholders to develop and promote best practices in analytics and experimentation across the company.
• Design and build internal self-service analytics and experimentation tooling.

Experience & skills required
• A Master's degree in a quantitative subject, ideally Physics or Mathematics.
• An ability to articulate and interpret commercial-based questions, identifying and querying data (SQL) and using statistics to arrive at an answer.
• A sound understanding of statistics (probability distributions, sampling, hypothesis testing, regression) and some practical experience in applying some of these concepts in real-life problems.
• Experience using statistical software and programming using R, SQL, Python or similar in datasets.
• Excellent communication skills to be able to understand business needs of cross-functional stakeholders, deliver findings and recommendations, as well as to drive collaboration.

Preferred Requirements
• Experience in identifying opportunities for product or business improvements and measuring the success of those initiatives.
• Experience in applying modelling techniques e.g. time series forecasting, segmentation / clustering, anomaly detection.

If this great opportunity interests you, please make an application to our Recruitment Partner, Datatech Analytics

Related Jobs

View all jobs

Data Science Analyst (Graduate 2024/25)

Analyst, Data Science – at Bank of England (Visa Sponsorship Available)

Head of Data Science

Data Science and Analytics Senior Business Analyst

Data Science & AI Consultant

Data Analyst

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.