Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Integration Engineer

PIC
London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineering and Integration Manager

Sr. Data Engineer

Data Engineer

Lead Data Engineer

Data Engineer

The key purpose of the role is to engineer solutions in a product centric team aligned to a business product owner.  The team contributes to the overall success of the organisation by implementing and maintaining robust technical solutions for the business. IT Development have a specific purpose in creating bespoke solutions that add value to give PIC an edge over competitors.

Requirements

Key responsibilities

  • Take a lead role in refining requirements, agreeing on solution designs, estimating effort, managing tasks effectively for integrating between Enterprise Data Management (EDM) System and Asset Valuation System and other models.
  • Implement internal applications and web services in accordance with change management policies.
  • Perform code quality, security, and testing reviews to ensure the high quality and security of computer systems and data.
  • Manage application performance requirements, tech debt, and innovate as part of continual improvement.
  • Monitor and maintain systems in line with the standard incident management process to meet business support requirements.

Knowledge, experience, skills, and abilities (technical competencies)

Technical

  • Proficiency in one or more structured programming languages such as C# and Python.
  • Good experience with version control systems like Git.
  • Deep understanding of data structures, algorithms, and system design and data virtualisation
  • Proficiency with data storage solutions including Cloud, File Storage and SQL databases
  • Experience with testing frameworks and methodologies.
  • Strong design and implementation skills of enterprise applications with cloud-based architecture, APIs, containerization and microservices.
  • Proficiency with CI/CD pipelines and DevOps practices.
  • Experience of cybersecurity principles and practices.

Desirable:

  • Expertise in cloud platforms like Azure, AWS or Google Cloud.
  • Knowledge of containerization technologies like Docker and orchestration tools like Kubernetes.
  • Experience of fixed income products (bonds and swaps).

Benefits

  • 28 days’ annual leave plus bank holidays
  • Pension
  • Insurance for Travel, Private Medical, Critical Illness, Life Assurance and Income Protection
  • Save As You Earn (SAYE)

And more

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.