National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineering Intern

Hirist
Manchester
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineering Associate

Data Engineer - Leeds - ADF - DWH - Up to £80k

Data Engineering Manager

Manager, Data Engineering

Lead Data Engineering

Senior Data Analyst - Pricing Data Engineering & Automation, CUO Global Pricing

Summer Internship – Data Engineering (Beginner to Intermediate Levels Welcome)

Duration:3 Months |Remote| Flexible Start

Hiring Partner:HIRIST – IT Recruitment Partner

Client:Reputed IT Company (Name confidential)


Interested in building the backbone that powers modern data systems? Whether you’re just starting out or have some experience with data pipelines — this internship gives you real-world exposure to how data is collected, processed, and delivered at scale.


HiRIST is hiringData Engineering Internsfor a reputed IT client, where you’ll work alongside data engineers solving practical data infrastructure challenges.

What You’ll Work On:

• Assist in designing, building, and maintaining data pipelines

• Work with structured and unstructured datasets from real business systems

• Support ETL/ELT processes using SQL, Python, or cloud-based tools

• Learn how to optimize data workflows for reliability and performance

• Help maintain data quality, governance, and documentation standards



🔍Who Should Apply:

This internship is ideal for:

• Students or recent grads from computer science, engineering, or data backgrounds

• Learners who enjoy solving problems through data structure, pipelines, and systems

• Beginners with some hands-on experience in SQL, Python, or data handling

• Intermediate learners looking to gain practical skills in building data infrastructure

You don’t need a fancy degree — just the drive to learn, experiment, and build.



🧠Must-Have Skills:

• Basic understanding of SQL and Python

• Familiarity with databases (relational or NoSQL)

• Interest in data flow, storage, and processing

• Good logical thinking and attention to detail



🌟Nice-to-Have (But Not Required):

• Experience with data pipeline tools like Apache Airflow, DBT, or Kafka

• Knowledge of cloud data services (AWS S3/Glue/Redshift, GCP BigQuery, Azure Data Factory)

• Exposure to Spark, Hadoop, or other big data frameworks

• Personal or academic data engineering projects



🎁Perks & Benefits:

• 1:1 mentorship with senior data engineers

• Live experience with production-grade data infrastructure

• Internship Certificate upon completion

• Letter of Recommendation based on performance

• Stipend opportunity based on skill and contribution



🔎Selection Process:

1. Resume Screening (look for data interest and logical mindset)

2. Beginner-friendly Data Engineering Task or quiz

3. Friendly Interview with Data Engineering Mentor/Manager

4. Final Selection & Onboarding via HiRIST



📝Apply If You:

• Are available for 4–12 weeks

• Can commit 15–20 hours/week remotely

• Want to work on real data engineering tasks (not training simulations)

• Are serious about launching your career in data infrastructure



📩Ready to Build the Data Backbone?

Apply with your resume + any optional GitHub/project portfolio link.

HiRIST – Connecting future builders to real tech teams.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.