Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineering Consultant

Talan
City of London
2 days ago
Create job alert
Overview

Talan Data x AI is a leading Data Management and Analytics consultancy, working closely with leading software vendors and top industry experts across a range of sectors, unlocking value and insight from their data. At Talan Data x AI, innovation is at the heart of our client offerings, and we help companies to further improve their efficiency with modern processes and technologies, such as Machine Learning (ML) and Artificial Intelligence (AI).

Our consultants are at the heart of everything we do, and we have been recertified as a 2025 Great Place to Work. This achievement not only highlights Talan Data x AI’s positive organisational culture but also strengthens its reputation as an employer of choice within the industry. We invest heavily in the training and development of our teams and hold regular socials in each region to encourage engagement and network building.

Skills and attributes for success
  • An excellent team player and able to work independently.
  • Excellent client facing skills with experience on client projects.
  • A self-starter who is proactive in nature.
  • Excellent verbal, written communication, and presentational skills.
  • Ability to build internal and external relationships.
  • Effective negotiating and influencing skills.
  • Ability to think creatively and propose innovative solutions.
  • Leadership skills.
To qualify for this role, you must have
  • Proven experience and knowledge with PySpark and Apache Spark including the fundamentals of how it works.
  • Core experience with AWS, with substantial and mature Azure platform offering.
  • Experience with other cloud platforms, e.g. Azure, GCP and data lake architectures.
  • Strong experience and programming skills in languages such as Python and SQL and the ability to write complex SQL queries.
  • Use of GitHub and CI/CD practices.
  • Support development of the Azure Databricks Lakehouse platform, shaping frameworks and solutions that other engineering teams will adopt in future data projects.
  • Build, optimise, and maintain data processing frameworks using Python, ensuring performance, scalability, and maintainability.
  • Support DBT integration and best practices for transformation pipelines within Databricks.
  • Apply software engineering principles including:
    • Source control, automated testing, CI/CD
    • Design patterns and reusable solutions
    • Coding standards and patterns
  • Collaborate with technical solution authorities, ensuring alignment with governance, design decisions, and platform standards.
  • Collaborate closely with the Cloud Architecture and Data Architecture teams to deliver approved solutions.
  • Stakeholder management, take ownership of requirements, communicate effectively across teams, and deliver high quality solutions.
  • Experience of DevOps and infrastructure deployments (Azure and Databricks).
  • A proactive awareness of industry standards, regulations, and developments.
  • Multi-skilled experience in one or more of the following disciplines: Data Management, Data Engineering, Data Warehousing, Data Modelling, Data Quality, Data Integration, Data Analytics, Data Visualisation, Data Science and Business Intelligence.
  • Proficiency in Infrastructure as Code tools, especially Terraform.
  • Experience with Terraform for cloud resource provisioning (AWS, Azure, GCP).
  • Project experience using one or more of the following technologies: Tableau, Power BI, Cloud, Azure, AWS, GCP, Snowflake and their integration with Databricks is advantageous.
Qualifications

You must be:

  • Willing to work on client sites, potentially for extended periods.
  • Willing to travel for work purposes and be happy to stay away from home for extended periods.
  • Eligible to work in the UK without restriction.
Additional Information

What we offer:

  • 25 days holiday + bank holidays.
  • 5 days holiday buy/sell option.
  • Private medical insurance.
  • Life cover.
  • Cycle to work scheme.
  • Eligibility for company pension scheme (5% employer contribution, salary sacrifice option).
  • Employee assistance programme.
  • Bespoke online learning via Udemy for Business.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineering Consultant

Data Engineering Consultant

Data Engineering Consultant

Data Engineering Consultant

Data Engineering Consultant

Data Engineering Consultant

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.