Data Engineer - Technical Intelligence

IO Global
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Who are we?

IOG, is a technology company focused on Blockchain research and development. We are renowned for our scientific approach to blockchain development, emphasizing peer-reviewed research and formal methods to ensure security, scalability, and sustainability. Our projects include decentralized finance (DeFi), governance, and identity management, aiming to advance the capabilities and adoption of blockchain technology globally.

We invest in the unknown, applying our curiosity and desire for positive change to everything we do. By fueling creativity, innovation, and progress within our teams, our products and services are designed for people to be fearless, to be changemakers.

What the role involves:

As a Data Engineer, you are part of the Technical Intelligence (TechInt) team. The team’s main function is to recon the blockchain industry and feed the company with new trends and projects. The TechInt team has automatized the recon process by utilizing a data lake and machine learning. The team currently harvests data from a variety of different sources. This data gets fed into different systems that then show this data as a report.

You are responsible for maintaining and setting up data solutions and services. A key part would be to aid in the maturation of the data ingestion pipeline and processes. Moreover, you would be expected to create a state-of-the-art data warehouse which would be cloud-native. In your daily job, you do a mix of data engineering, and cloud infrastructure management. 

  • Develop and maintain automated data ingestion (API or crawling) pipelines from source code repositories, social media, and on-chain analytics. 
  • Simplify existing data pipelines - re-architecting where necessary.
  • Research existing datasets to figure out their relevance - and remove irrelevant data pipelines and sources.
  • Design a data warehouse that can be queried by analysts and APIs, and that will serve as a data backend for a reporting web application.
  • Collaborate with data scientists to operationalize ML models and deploy them into production environments.
  • Work closely with leadership to understand and define requirements, ensuring alignment with the department’s strategy and roadmap.
  • Collaborate with a Data Scientist and an Intelligence Engineer to implement technical solutions that meet project goals.
  • Ensure systems are functional, available, and carefully monitored for continuous performance and reliability.

Requirements

Who you are:

  • Minimum 3–4 years of hands-on recent experience with AWS cloud services :
  • Knowledge of Infrastructure as code (such as Terraform, AWS CloudFormation, Python AWS CDK).
  • Knowledge of cloud services management in AWS (such as S3, Redshift, Lambda, Batch, Glue, Athena etc.).
  • Hands-on experience with Docker for containerizing data applications.
  • Knowledge of relational databases and writing highly optimized SQL, including data transformations, complex joins, and performance tuning.
  • Strong proficiency in Python programming, including PySpark for data transformation.
  • Ability to communicate well both verbally and in writing, with both technical and non-technical partners. Professional English.

It would be beneficial if you have the following:

  • BSc/MSc in a Computer Science field, or equivalent practical experience. 
  • Knowledge of big data processing platforms (such Databricks) and data manipulation libraries in Python (such as Pandas, Polars).
  • Knowledge of docker container orchestration (such as Kubernetes, ECS).
  • Knowledge of Continuous Integration and Continuous Delivery (CI/CD) pipelines (such as GitHub Actions, Travis, Jenkins).
  • Knowledge of blockchain on-chain data representation.

Are you an IOGer?

Do you find yourself questioning the status quo? Do you tinker with ideas and long to turn those ideas into solutions? Are you able to spark thoughtful debates, bringing out the inquisitiveness in others? Does the promise of continuously growing excite you? Then get ready to reimagine everything you thought wasn’t possible because that’s what it means to be an IOGer - we don’t set limits, we break them. 

Benefits

  • Remote work
  • Laptop reimbursement
  • New starter package to buy hardware essentials (headphones, monitor, etc)
  • Learning & Development opportunities
  • Competitive PTO 

At IOG, we value diversity and always treat all employees and job applicants based on merit, qualifications, competence, and talent. We do not discriminate on the basis of race, religion, color, national origin, gender, sexual orientation, age, marital status, veteran status, or disability status.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.