National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer II, Amazon

Amazon
London
3 days ago
Create job alert

Amazon’s Consumer Payments organization is seeking a highly quantitative, experienced Data Engineer to drive growth through analytics, automation of data pipelines, and enhancement of self-serve experiences. You will succeed in this role if you are an organized self-starter who can learn new technologies quickly and excel in a fast-paced environment. In this position, you will be a key contributor and sparring partner, developing analytics and insights that global executive management teams and business leaders will use to define global strategies and deep dive businesses.
You will be part the team that is focused on acquiring new merchants from around the world to payments around the world. The position is based in India but will interact with global leaders and teams in Europe, Japan, US, and other regions. You should be highly analytical, resourceful, customer focused, team oriented, and have an ability to work independently under time constraints to meet deadlines. You will be comfortable thinking big and diving deep. A proven track record in taking on end-to-end ownership and successfully delivering results in a fast-paced, dynamic business environment is strongly preferred.
Responsibilities include but not limited to:

  • Design, develop, implement, test, and operate large-scale, high-volume, high-performance data structures for analytics and Reporting.
  • Implement data structures using best practices in data modeling, ETL/ELT processes, and SQL, AWS – Redshift, and OLAP technologies, Model data and metadata for ad hoc and pre-built reporting.
  • Work with product tech teams and build robust and scalable data integration (ETL) pipelines using SQL, Python and Spark.
  • Continually improve ongoing reporting and analysis processes, automating or simplifying self-service support for customers.
  • Interface with business customers, gathering requirements and delivering complete reporting solutions.
  • Collaborate with Analysts, Business Intelligence Engineers and Product Managers to implement algorithms that exploit rich data sets for statistical analysis, and machine learning.
  • Participate in strategic & tactical planning discussions, including annual budget processes.
  • Communicate effectively with product/business/tech-teams/other Data teams.

    BASIC QUALIFICATIONS - 3+ years of data engineering experience
  • Experience with data modeling, warehousing and building ETL pipelines
    PREFERRED QUALIFICATIONS - Experience with AWS technologies like Redshift, S3, AWS Glue, EMR, Kinesis, FireHose, Lambda, and IAM roles and permissions
  • Experience with non-relational databases / data stores (object storage, document or key-value stores, graph databases, column-family databases)

    Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.
    Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

    #J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist II

Data Scientist II, Data Scientist II - AOP Team

Data Scientist II...

Data Scientist II, Regulatory, Intelligence, Safety and Compliance (RISC)

Data Engineer II

Data Engineer II

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.