National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer

Adecco
Bristol
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer / Software Engineer
Location: Bristol (Hybrid - 2 days in-office)

A leading Insurtech company in Bristol is seeking a skilled and versatile Data Engineer / Software Engineer to join their dynamic team. This hybrid role requires at least two days a week in the office, supporting the company's continued growth. They are looking for a talented, enthusiastic individual to help drive the development and enhancement of AI/ML-powered data enrichment pipelines and processes.

The ideal candidate will have strong Python skills, a creative problem-solving mindset, and a passion for working with cutting-edge AI/ML systems and models.

Key Responsibilities:
Optimize and Enhance Pipelines: Continuously evaluate, refine, and improve the performance of data enrichment pipelines to ensure they are efficient, reliable, and scalable.
Data Management: Design and implement robust data cleaning, ingestion, and preparation processes to support analytical and machine learning models.
Collaborative Problem-Solving: Work closely with data scientists to identify, troubleshoot, and resolve complex issues, ensuring seamless and efficient operations.
Model Development and Deployment: Contribute to the development, training, monitoring, and deployment of state-of-the-art machine learning models.
Innovation and Continuous Learning: Stay updated on the latest advancements in data processing, AI/ML, and apply these innovations to improve internal systems.
Flexible Engineering Approach: Collaborate across various engineering roles, such as backend technologies and API development, often outside the traditional scope of data engineering.
Skills and Qualifications:
Education: Bachelor's degree (or equivalent) in computer science, mathematics, or a related field.
Experience: Minimum of 3 years in a similar role, with proven success in developing and deploying machine learning models or data pipelines.
Technical Skills: Strong proficiency in Python, with hands-on experience in PySpark or Pandas.
Software Engineering Expertise: Knowledge of modern software engineering practices, including coding standards, testing, and deployment best practices.
Problem-Solving: Strong analytical and problem-solving abilities, especially related to data quality and model performance improvements.
Creativity and Innovation: Demonstrated ability to think creatively and independently deliver innovative solutions.
Desirable Qualifications:
Production ML Experience: Hands-on experience deploying and maintaining machine learning models in production environments.
Advanced Techniques: Familiarity with gradient boosting methods and large-scale text embedding models.
Tool Proficiency: Experience working with Databricks, Git, CI/CD pipelines, and advanced software testing approaches.
ML Expertise: Deep knowledge of machine learning techniques and best practices in model development.
GPU Optimization: Experience in converting and optimizing CPU-based models and algorithms to run efficiently on GPUs is a plus.


Please apply y following the links below.

To speak to a recruitment expert please contact

MoreInformation

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.