Data Backend Engineer - Product Monetization (Remote - United Kingdom)

Yelp
Belfast
2 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Backend Engineer - Data Engineer

Senior Software Engineer - Data (Basé à London)

Senior Backend Engineer

Senior Backend Engineer

Backend Engineer, Issuing

Senior Golang Engineer – $50 million Series B

JOB DESCRIPTION

Summary

Yelp engineering culture is driven by our : we’re a cooperative team that values individual authenticity and encourages creative solutions to problems. All new engineers deploy working code their first week, and we strive to broaden individual impact with support from managers, mentors, and teams. At the end of the day, we’re all about helping our users, growing as engineers, and having fun in a collaborative environment.

Yelp is seeking an entry-level Software Engineer who is excited to work at the intersection of data and backend engineering. In this role, you'll help design and develop systems that power Yelp’s advertising platform—from building SDKs for large-scale event ingestion to designing data pipelines that process and analyze those events.

You’ll be joining the Product Monetization Platform team, which is responsible for collecting and processing ad-related events. Our work supports critical business functions, including billing, analytics, machine learning, and ad serving. This is a great opportunity to gain hands-on experience with scalable data systems while contributing to Yelp’s revenue-driving products.

This opportunity requires you to be located in the United Kingdom. We’d love to have you apply, even if you don’t feel you meet every single requirement in this posting. At Yelp, we’re looking for great people, not just those who simply check off all the boxes.


What you'll do:

Contribute to the experimentation and development of new ad products at Yelp. Design, build, and maintain efficient data pipelines using large-scale processing tools like Apache Spark to transform ad-related data. Manage high-volume, real-time data streams using Apache Kafka and process them with frameworks like Apache Flink. Estimate timelines for projects, feature enhancements, and bug fixes. Work with large-scale data storage solutions, including Apache Cassandra and various data lake systems. Collaborate with cross-functional teams, including engineers, product managers and data scientists, to understand business requirements and translate them into effective system designs. Support on-call rotations as needed to operate the team.


What it takes to succeed:

Experience writing code in a modern object-oriented programming language (e.g., Python, Java, or C++). Strong problem-solving and critical-thinking skills. Comfortable in navigating and understanding complex codebases and distributed systems. Ability to communicate effectively to technical and non-technical cohorts alike. Self-motivated with a proactive approach to identifying opportunities and recommending scalable, creative solutions. Exposure to some of the following technologies: Python, AWS Redshift, AWS Athena / Apache Presto, Big Data technologies (e.g S3, Hadoop, Hive, Spark, Flink, Kafka etc), NoSQL systems like Cassandra, DBT is nice to have.


What you'll get:

Full responsibility for projects from day one, a collaborative team, and a dynamic work environment. Competitive salary, a pension scheme, and an optional employee stock purchase plan. 25 days paid holiday (rising to 29 with service), plus one floating holiday. £150 monthly reimbursement to help cover remote working expenses. £81 caregiver reimbursement to support dependent care for families. Private health insurance, including dental and vision. Flexible working hours and meeting-free Wednesdays. Regular 3-day Hackathons, bi-weekly learning groups, and productivity spending to support and encourage your career growth.  Opportunities to participate in digital events and conferences. £81 per month to use toward qualifying wellness expenses. Quarterly team offsites.


Closing

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.