Data Architect

8x8, Inc.
London
2 months ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect

Senior Data Architect - Databricks

Data Engineering Lead / Data Architect

Data & AI Solution Architect, Azure, Remote

Microsoft Data Solution Architect

8x8, Inc. (NASDAQ: EGHT) believes that CX limits were meant to be shattered. We connect people and organizations through seamless communication on the industry's most integrated platform for Customer Experience—combining Contact Center, Unified Communications, and CPaaS APIs. The 8x8 Platform for CX integrates AI at every level to enable personalized customer journeys, drive operational excellence and insights, and facilitate team collaboration.

Please make an application promptly if you are a good match for this role due to high levels of interest.We help customer experience and IT leaders become the heartbeat of their organizations, empowering them to unlock the potential of every interaction. With one platform, one ecosystem, and one data model, you can turn every team into a customer-facing team and unify your CX to conquer the complexity.As an organization, we are looking for Team8s who are AI-proficient, open to innovation, and skilled in leveraging AI for efficiency and growth.8x8 is seeking a visionary Data Architect to lead the design, management, and scaling of our next generation data platform, with Snowflake and Tableau at the core. This platform will support both advanced reporting and analytics, directly aligned with our company’s strategic vision. The ideal candidate will bring revolutionary thinking to our data architecture, tackling existing challenges related to data governance, definitions, and business rules. This is a key role within the company’s broader data team, requiring close collaboration with C-suite executives and cross-functional teams to drive a transformative approach to data. Play a pivotal role in building a next-gen data platform that will shape the future of data at 8x8.Key Responsibilities:

Data Architecture Design & Strategy:

Develop and lead the implementation of the company’s next-generation enterprise data platform, with Snowflake and Tableau at the center.Build and maintain a comprehensive data architecture roadmap, outlining a clear path to achieving a scalable and extensible data infrastructure.Lead the effort to establish a unified vision for end-to-end data management, including governance, controls, definitions, and business rules.

Data Modeling & Integration:

Design both logical and physical data models to meet evolving business needs, ensuring best practices are followed.Integrate various data sources, including Salesforce, and use ETL/ELT processes (via Matillion) to streamline data flows into centralized repositories.Collaborate with the engineering team to build a cloud-first data architecture, avoiding unnecessary platform dependencies.

Data Governance & Security:

Establish robust data governance frameworks that ensure compliance, data privacy, and data quality across all organizational levels.Implement security protocols to safeguard sensitive data and align with industry regulations.

Collaboration & Stakeholder Engagement:

Partner with business units to understand and analyze data requirements, translating them into technical specifications and solutions.Present architectural visions and progress to senior leadership, including C-suite executives, ensuring alignment with broader business goals.

Documentation & Roadmap Creation:

Lead the effort to document the data architecture strategy and vision, making sure it is socialized effectively across the organization.Within the first six months, deliver a detailed roadmap that outlines the key milestones needed to achieve an optimal data architecture.

Performance Monitoring & Continuous Improvement:

Monitor data systems for performance issues, scalability concerns, and areas for improvement.Keep up with emerging technologies and industry best practices, incorporating new tools and techniques as appropriate to enhance 8x8’s data capabilities.

Qualifications: Bachelor’s degree in Computer Science, Data Science, Information Technology, or a related field; Master’s degree preferred.5+ years of experience in data architecture, data modeling, or related roles. Strong hands-on experience with Snowflake and Tableau, including performance optimization and design of scalable data systems.Experience with Matillion, Salesforce, and data integration methodologies, with a preference for avoiding unnecessary platform dependencies.Deep knowledge of data governance, compliance, and security frameworks. Expertise in data modeling tools and ETL processes, with an ability to optimize data flows and warehouse performance.Strong communication and presentation skills, with experience engaging at the C-suite level.Analytical mindset with excellent problem-solving skills and a visionary approach to data.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.