Data Annotation Specialist (English UK) | London

Welocalize
London
3 months ago
Applications closed

Related Jobs

View all jobs

Computer Vision Engineer - (Remote - UK, Ireland and Hungary)

Data Scientist/Machine Learning Engineer - RNA Design

Genomic Data Scientist

Genomic Data Scientist

Senior Data Analyst, AGI-DS RAMP

Bioinformatic Software Engineer

OVERVIEW

We are seeking a QA Analyst - Data Annotation Specialist to contribute to a high-profile technology project. The ideal candidate will have a foundational understanding of quality assurance, data annotation, and data handling. Additionally, they must befully proficient in English (UK)and possess excellent communication skills. They will play a pivotal role in ensuring the quality and accuracy of the project data.

Project Details

Job Title: QA Analyst - Data Annotation Specialist
Location: On-site at one of our offices in London
Hours: 40 hours weekly
Language:English (UK)
Start date: February 3rd
Duration: 12 months

Responsibilities

  • Conduct data annotation and QA
  • Collaborate with team members on-site
  • Ensure secure handling of data and maintain confidentiality

Requirements

  • Proficiency in English (US) and English (UK) at a fully fluent level is required.
  • At least 1-2 years of data annotation experience
  • Visual annotation experience is a plus (Video & Image)
  • Experience in quality assurance
  • Excellent communication skills
  • Augmented Reality experience is a plus
  • No technical skills needed, but a linguistic background and/or formal QA experience is required
  • Ability to work 100% on-site
  • Strong attention to detail and problem-solving skills
As a trusted global transformation partner, Welocalize accelerates the global business journey by enabling brands and companies to reach, engage, and grow international audiences. Welocalize delivers multilingual content transformation services in translation, localization, and adaptation for over 250 languages with a growing network of over 400,000 in-country linguistic resources. Driving innovation in language services, Welocalize delivers high-quality training data transformation solutions for NLP-enabled machine learning by blending technology and human intelligence to collect, annotate, and evaluate all content types. Our team works across locations in North America, Europe, and Asia serving our global clients in the markets that matter to them.www.welocalize.com

To perform this job successfully, an individual must be able to perform each essential duty satisfactorily. The requirements listed below are representative of the knowledge, skill, and/or ability required. Reasonable accommodations may be made to enable individuals with disabilities to perform essential functions.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.