Data Analytics & Data Science Lead

Birmingham
8 months ago
Applications closed

Related Jobs

View all jobs

Manufacturing Data Scientist

Manufacturing Data Scientist

Data & Analytics Data Scientist (Public sector) Professional Multiple Cities

Benefit Risk Management Center of Excellence Data Scientist

Head of Data Science, Analytics and Reporting

Senior Game Analytics Data Scientist — Lead Insights & ML

Michael Page have exclusively partnered with The Government Property Agency (GPA) to support on their continued Data Transformation programmes. The newly created role of Data Analytics & Data Science Lead is pivotal in this strategy

Client Details

Government Property Agency

Description

Introduction:

Michael Page have exclusively partnered with The Government Property Agency (GPA) to support on their continued Data Transformation programmes. The newly created role of Data Analytics & Data Science Lead is pivotal in this strategy. The GPA is the largest property holder in government, with more than £2.1 billion in property assets and over 55% of the government's office estate.

The GPA are transforming the way the Civil Service works by creating great places to work, leading the largest commercial office programme in the UK, working towards halving carbon emissions from government offices, and achieving greater value for taxpayers. The team are seeking innovative, solutions-focused people to work on leading transformational programmes such as the Government Hubs Programme, Whitehall Campus Programme and Net Zero Programme, as well as delivering modern, cost-effective real estate service solutions.

Innovation and progress are at the heart of GPA behaviours, fostering a culture of lifelong learning, where curiosity and self-improvement are encouraged. The organisation is dedicated to becoming a leading, inclusive employer both in the external market and throughout the Civil Service. A strong emphasis on Equity, Diversity, and Inclusion (EDI) is not just about driving inclusion across our organisation, it is also about ensuring the services meet the needs of government departments and the civil servants work environments.

Job Overview:

Data analytics combined with Data Science can provide a transformational and powerful combination to support GPA's current and forward planning in key areas such as across Operations, Portfolio Performance, H&S, Risk Management and Sustainability. It provides essential actionable insights to support planning, decision making, scenario planning and predictive analytics.
Data analytics across the GPA is already providing a transparent, interactive interface to the large amount of data collected and processed in GPA. Because of the demand and high importance of data analytics & reporting, a lead role is needed to manage the portfolio of work and the velocity and variety of the data within GPA.
A number of exemplar PowerBI dashboards are already supporting business plan objectives and crucial reporting in areas such as Occupancy, Property Portfolio, Customer Satisfaction, Client Satisfaction, CRM Reporting, Sustainability etc.
Additionally, the GPA would benefit from developing capability in data science. This is closely related to data analytics, but with emphasis on developing new methods and insights from data facilitating improvements to our operational data analytics capability.
Work locations: Birmingham, Bristol, Leeds, Swindon, Nottingham or Manchester
Hybrid working arrangement - 2 days per week in the officeKey Responsibilities:

Support the delivery of GPA's Information & Data Strategy and wider reporting requirements.
Support the delivery of reporting & dashboard business KPI's, providing more focussed support to business critical dashboards and reporting
Responsible for leading a team of developers and monitoring their daily duties to ensure a high performing team, supporting and delivering against business outcomes.
Leading the data analytics team in design, development, testing and release to its intended audience.
Support the team with business engagement, hosting working group sessions to provide updates to all levels of the business.
Collaborate across GPA at all levels to gather requirements and produce new dashboards that will aid in their daily working duties for the GPA.Profile

Person Specification / Key Skills Criteria & Qualifications:

As a data driven organisation, a data analytics lead is essential to assure the organisation can devise approaches and systems to 'make sense' of the large volumes of data present in the organisation
The data analytics and science lead ensures that the GPA:
Engages and liaises across GPA to ensure Business Intelligence requirements are captured and understood
Has fully documented methods and approaches to create BI products updated
Has reliable and accurate Business Intelligence applications deployed as required by the business
Oversee the investigation / development of new methods for data analysis such as AI

Essential criteria:

Power BI, Azure, Redshift, Databases, Power Platform, Dev Ops, SQL
Design and development of Power BI artefacts and environments
Numerical analysis methods
Stakeholder management and consensus building
Working in an Agile development environment
Managing a team of software developers / engineers
A computer/analytics University degree

Desirable criteria:

Work prioritisation and scheduling to time and budget
People training & development
Using Agile development environments such as JIRA
Microsoft Accreditation for Data Analytics (DA-100)
Gold Standard: IT & Data Management - CITP / CsyPJob Offer

28.9% Government Pension Scheme + Excellent Benefits

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.