National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Analyst

Accelerant
Sheffield
1 month ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst – Insurance & Actuarial Focus

Location:United Kingdom

Level:Mid-Senior Level


Accelerant is looking for a detail-drivenData Analystwith a passion for data and a strong background ininsurance analyticsto join their dynamic, collaborative team. If you thrive on solving complex data problems and want to make a real impact in a fast-paced, tech-forward insurance environment, I’d love to hear from you.


This role is particularly well-suited to someone with prior experience in the insurance sector — ideally in actuarial pricing.A deep understanding of insurance data, pricing models, and portfolio analysis will set you up for success.


Your Role at Accelerant

You’ll work at the heart of their data operations, helping to shape the future of insurance through smarter data use. Your main responsibilities will include:


  • Partnering with business and underwriting teams to understand data needs, with a focus oninsurance and pricing data.
  • Developing rapid data prototypes to support actuarial and product engineering design.
  • Conducting in-depth analysis on member and portfolio data, including profiling, gap analysis, and quality assessment.
  • Supporting pricing initiatives and product development with reliable, accurate data insights.
  • Building and optimizing data pipelines that feed critical actuarial and underwriting tools.
  • Leading efforts to identify, track, and resolve data quality issues — especially those affecting actuarial pricing.
  • Creating automated data workflows to streamline reporting and analytics.
  • Constantly seeking ways to improve data processes, tools, and output quality.


What You Bring

  • A degree in a quantitative field (e.g. Statistics, Mathematics, Computer Science, or Actuarial Science).
  • Proven experience in the insurance industry — actuarial pricing experience is highly preferred.
  • Hands-on experience with SQL and/or Python.
  • Strong analytical skills, with a love for problem-solving and pattern-finding.
  • Excellent communication skills, with the ability to tailor insights to technical and non-technical audiences.
  • A high level of precision and dedication to data integrity.


Who You Are

  • Comfortable navigating insurance datasets, actuarial models, and pricing frameworks.
  • Proactive and resourceful — especially in Agile environments.
  • Curious, detail-obsessed, and passionate about using data to drive better decisions.
  • A strong collaborator who thrives in cross-functional teams.


Join Accelerant in redefining the way modern insurance works — with smarter pricing, cleaner data, and faster decision-making.


If interested, please press apply or send your CV to .

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.