Conversational Designer

Knutsford
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer - Data Pipelines

Data Science and Analytics Senior Business Analyst

Lead Data Analyst - Customer Experience

AI & NLP Trainer

Principal Machine Learning Engineer - Personalisation United Kingdom

Machine Learning Engineer - Personalisation

Join us as a Conversational Designer at Barclays where you'll spearhead the evolution of our digital landscape, driving innovation and excellence. You'll harness cutting-edge technology to revolutionise our digital offerings, ensuring unapparelled customer experiences. The role involves designing the end to end journey of a service to enable a user to complete their goals. It may involve the creation of, or change to, transactions, products and content across both digital and offline channels. The role sits within the Digital Assistance team and focuses on designing conversations for chatbot.

To be successful as a Conversational Designer you should have experience with:

Customer centric design experience

Conversation design experience - chatbot experience

Cross functional collaboration experience

Other highly valued skills include:

Knowledge of NLP

Data driven decision making

Research skills

This role will be based out of our Radbroke or London/ Shoreditch campus.

Purpose of the role

To design the end to end journey of a service to enable a user to complete their goals. The work may involve the creation of, or change to, transactions, products and content across both digital and offline channels provided by different parts of Barclays. 

Accountabilities

Creation of design assets to drive business outcomes, including service blueprinting, customer journey mapping and service prototyping.

Creation of intuitive and user-friendly interfaces for digital banking platforms and applications for a seamless and engaging user experience.

Design and maintenance of visually appealing and consistent user interfaces that align with the bank's brand identity and design guidelines across digital products.

Creation of wireframes and interactive prototypes for visualisation and testing of product concepts and features before development.

Compliance to accessibility standards and guidelines to provide an inclusive experience for all users.

Monitoring of industry trends, design best practices, and emerging technologies to continuously improve the design quality and innovation of banking products.

Gathering and analysis of data from a wide range of sources to create in-depth insights into customer’s needs or pain-points to aid business understanding of the customer experience.

Assistant Vice President Expectations

Consult on complex issues; providing advice to People Leaders to support the resolution of escalated issues.

Identify ways to mitigate risk and developing new policies/procedures in support of the control and governance agenda.

Take ownership for managing risk and strengthening controls in relation to the work done.

Perform work that is closely related to that of other areas, which requires understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub-function.

Collaborate with other areas of work, for business aligned support areas to keep up to speed with business activity and the business strategy.

Engage in complex analysis of data from multiple sources of information, internal and external sources such as procedures and practises (in other areas, teams, companies, etc).to solve problems creatively and effectively.

Communicate complex information. 'Complex' information could include sensitive information or information that is difficult to communicate because of its content or its audience.

Influence or convince stakeholders to achieve outcomes.

All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship – our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset – to Empower, Challenge and Drive – the operating manual for how we behave

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.