Bourse d'études - TotalEnergies - Imperial College London - Prog. Environmental Data Science and Machine Learning MSc (EDSML) M/F

TotalEnergies
10 months ago
Applications closed

Contexte et environnement

Intégrez une équipe dynamique et innovante pour développer vos compétences et contribuer à des projets ambitieux. 

Rejoindre TotalEnergies, c’est rejoindre une compagnie multi-énergies mondiale de production et de fourniture de toutes les énergies : pétrole et biocarburants, gaz naturel et gaz verts, renouvelables et électricité.

Activités

Vous êtes étudiant(e) et vous souhaitez intégrer le programme "" au sein de l'Imperial College Londontout en bénéficiant d'une bourse d'études de TotalEnergiespendant la durée de votre scolarité ?

IMPORTANT - Comment postuler :

Si cette bourse d'études vous intéresse,

Merci de déposer votre candidature en répondant à cette offreavant le 30 avril 2025(les candidatures ultérieures à cette date ne seront pas prises en compte).

Veuillez noter que vous devez soumettre une candidaturepour le cours Environmental Data Science and Machine Learning MSc en plus de postuler à cette offre de bourse d'études.

Profil du candidat

Formation :

Vous êtes étudiant(e) en école d'ingénieurs ou Universités : 5 ans d'études ou une première année de Master effectuée après un Bachelor, avec une formation dans le domaine de l'environnement ou du numérique (mathématiques appliquées, programmation).


Expériences :

Un stage dans le domaine numérique et la programmation lié aux énergies est requis.

Des expériences à l'étranger sont appréciées.


Compétences :

Anglais courant : TOEFL 92 au total (minimum 20 dans tous les éléments)

Expérience avérée en matière de codage

Niveau avancé en mathématiques

Compétences dans le domaine de l'environnement / problématiques liées à l'environnement

Modélisation

Informations supplémentaires

TotalEnergies valorise la diversité, promeut le développement individuel et offre des opportunités d'emploi égales à tous les candidats.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.