Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AWS Data Engineer

Datatech Analytics
London
4 months ago
Applications closed

Related Jobs

View all jobs

AWS Data Engineer

AWS Data Engineer - Inside IR35 (IT) / Freelance

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

Salary: Negotiable to £80,000 Dependent on Experience

London: Hybrid working 3 days per week in the office 2 days home-based

Job Ref: J12931


A leader in consumer behaviour analytics, seeks a driven Data Engineer with proven AWS experience to guide data infrastructure architecture, working alongside a small talented team of engineers, analysts, and data scientists. In this role, you’ll enhance the data platform, develop advanced data pipelines, and integrate cutting-edge technologies like DataOps and Generative AI, including Large Language Models (LLMs).

You’ll have proven experience developing AWS Cloud platforms end to end, orchestrating data using Dagster or similar as well as coding in Python and SQL. This is an exciting opportunity for someone looking to challenge themselves in a collaborative environment, with scope to be instrumental in the scaling of the data infrastructure.


Key Responsibilities

  • Develop and optimize ETL/ELT processes to support data transformation and integrity for analytics.
  • Explore and evaluate new data warehousing solutions, including Snowflake, to improve data accessibility and scalability.
  • Partner with product and engineering teams to define data architecture and best practices for reporting.
  • Ensure data security, compliance, and governance across data systems.
  • Implement and maintain CI/CD pipelines to automate data workflows and enhance system reliability.
  • Identify, design, and implement internal process improvements: automating manual processes, optimizing data delivery, re-designing infrastructure for greater scalability and performance.


Essential Skills and Experience:

  • Hands-on experience with AWS services, including Lambda, Glue, Athena, RDS, and S3.
  • Strong SQL skills for data transformation, cleaning, and loading.
  • Strong coding experience with Python and Pandas.
  • Experience of data pipeline and workflow management tools: Dagster, Celery, Airflow, etc.
  • Build processes supporting data transformation, data structures, metadata, dependency and workload management.
  • Experience supporting and working with cross-functional teams in a dynamic environment.
  • Strong communication skills to collaborate with remote teams (US, Canada)


Nice to Have

  • Familiarity with LLMs including fine-tuning and RAG.
  • Knowledge of Statistics
  • Knowledge of DataOps best practices, including CI/CD for data workflows.


Please note we can only accept applications from those with current UK working rights for this role, this client cannot offer visa sponsorship.


If this sounds like the role for you then please apply today!


Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme.

Datatech is one of the UK’s leading recruitment agencies in the field of analytics and host of the critically acclaimed event, Women in Data. For more information, visit our website: www.datatech.org.uk

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.