National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

AWS Data Engineer

Experis - ManpowerGroup
Belfast
3 days ago
Create job alert

Role: Data Engineer
Location: Belfast
Duration: Long Term Contract Opportunity - Rolling Contract
Rate: Market Rates - Inside IR35
Job Description : Fujitsu's Decision Intelligence practice in the UK helps organisations bridge the gap between data and insights, empowering businesses to make smarter decisions, optimise operations, and drive innovation. From AI-powered analytics to data governance and security, we offer a comprehensive suite of services to help our Public and Private Sector customers unlock the full potential of their data.
Job Summary : We are seeking a skilled and experienced AWS Data Engineer to join our team. The successful candidate will be responsible for implementing, and managing data architecture solutions for our customers, with a strong emphasis on Cloud technologies (Preferably AWS) and tooling. This role requires understanding of data modelling, database design, and data integration techniques.
Key Responsibilities
Data Ingestion and Extraction: Design and implement efficient data ingestion pipelines to and from databases and file storage services.
Data Transformation and Cleaning: Transform and clean raw data to ensure data quality and consistency.
Data Pipelines: Build, maintain, and optimise data pipelines to automate data flows and enable real-time data processing.
Data Quality Assurance: Monitor data quality and implement measures to ensure data accuracy and completeness.
Database Administration: Manage and maintain databases (e.g., SQL, NoSQL) to ensure optimal performance and security.
Cloud Infrastructure: Deploy and manage data infrastructure on cloud platforms - Primarily AWS
Collaboration: Work closely with data analysts, data scientists, and other stakeholders to understand their data needs and deliver high-quality data solutions.
Key Skills
Strong proficiency in SQL, Python, and Spark. Experience with metadata-driven ETL/ELT.
Experience with AWS Glue, Databrew, S3, AWS Lambda, PostgreSQL, Quicksight
Version Control (Gitlab) and CI/CD
Familiar with security and networking principles, especially in an AWS deployment.
Understanding and experience handling both structured and unstructured data.
AWS focused with working experience and/or relevant certifications such as AWS Certified Data Engineer.
Experience with complex data migrations.
Strong problem-solving and analytical skills.
Excellent communication and collaboration skills.
Understanding of Infrastructure as Code
Understanding of GIS data models
About you
At Fujitsu our people are our number one priority. We are passionate about developing you to your full potential, so you can perform every day at your best to deliver our vision to our customers. Learning and growing is at the heart of what we do. We recognise learning is a continuous process not an event. It doesn't just happen in the classroom, but every day, in the flow of work.
At Fujitsu we encourage you to challenge yourself and to shape your learning journey in a way that works best for you. You won't be alone in your journey, or short of opportunities to learn. We have a whole host of different tools, resources, and programs to help you achieve this. We've got you covered with everything from technical learning to management development, business skills to our award-winning talent programs.

#J-18808-Ljbffr

Related Jobs

View all jobs

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer - Market Data

AWS Data Engineer (Must hold current SC)

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.