National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Assistant Manager, Data & Technology

Interpath Advisory
London
5 months ago
Applications closed

Related Jobs

View all jobs

Tax Technology Assistant Manager

Senior Data Scientist

Legal Onboarding Specialist

IT Assistant Vice President – Data Engineering

Assistant Group Head of IT

Data Scientist Manager

Interpath Advisory is seeking a Assistant Manager for their Data & Technology team. As a broad-spectrum financial advisory business, Interpath's purpose is to create, defend, preserve, sustain, and grow value. This position is an ideal opportunity to work as a part of a team of professionals who deliver high-quality services to clients ranging from SMEs to the largest corporations on the planet. Interpath has 11 offices across the UK and 4 international offices and offers experts who truly understand the complexities of different markets.

The Data & Technology Assistant Manager is an essential role in driving data insights and strategy execution for clients within Interpath Advisory. Reporting directly to the Data & Technology Senior Management, the Data & Technology Senior Associate will support client facing engagements both within the Data and Technology Team as well as working alongside other data enabled service lines across the Firm.

Key accountabilities:

  • Collaborate with clients to collect, understand, process, and convert complicated data into easy-to-understand outputs.
  • Work alongside a range of different Interpath client facing teams to support a variety of project types including working capital improvement, ESG and transactions. 
  • Develop tools and processes to enable data enabled client delivery with a focus on efficiency and maximising value for clients.
  • Develop clear and concise reports, dashboards, and other presentations, communicating complex data in a simple and easy-to-understand format.
  • Provide support for the development of technical data-driven solutions to meet client needs.
  • Partner with project teams and act as a subject matter expert for data-related tasks.
  • Own the ongoing development and improvement of digital IP such as dashboards and data workflows used to deliver client engagements.

Requirements

  • Bachelor's or Master’s degree in Computer Science, Analytics, Statistics, Finance, Engineering, or a related field with a focus on data analysis.
  • At least 2-3 years of experience in a data analytics role, preferably in professional services advising clients on financial projects.
  • Experience transforming data for analysis, preferably using Alteryx, SQL, or Python.
  • Analysing data, with strong Excel skills and preferably machine learning techniques.
  • Creating dashboards, preferably with PowerBI.
  • Implementing re-usable, long-term analytics solutions (ETL, data warehousing etc.).
  • Using analytics cloud services, preferably Azure.
  • Commercial experience, such as analysing data from accounting systems, general ledger, ERP systems, or financial statements.
  • Excellent problem-solving and analytical skills.
  • Excellent written and verbal communication and presentation skills.

Benefits

  • Annual leave 26 days (in addition to Public/Bank Holidays)
  • Private medical insurance
  • Life Assurance (4x salary)
  • Group Income Protection
  • Holiday buy (up to 10 days via salary sacrifice)
  • Workplace pension scheme
  • Discretionary bonus scheme
  • Discounted gym membership
  • Dental Insurance (optional, BUPA)
  • Critical Illness Insurance (optional)
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.