Applied Scientist I, Amazon

Amazon
London
1 day ago
Create job alert

Amazon is investing heavily in building a world-class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.

The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalogs, handle billions of requests a day with plans to grow it by an order of magnitude, and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages.

In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train, and deploy these models. As part of these activities, you will develop production-level code that enables moderation of millions of ads submitted each day.

BASIC QUALIFICATIONS

- Experience programming in Java, C++, Python, or related language
- Experience with SQL and an RDBMS (e.g., Oracle) or Data Warehouse
- Experience building machine learning models or developing algorithms for business applications
- Experience researching machine learning, deep learning, NLP, computer vision, and data science
- Experience in state-of-the-art deep learning model architecture design, training, optimization, and model pruning
- Enrolled in or have completed a Bachelors degree in computer science, machine learning, engineering, or related fields

PREFERRED QUALIFICATIONS

- Experience implementing algorithms using both toolkits and self-developed code
- Publications at top-tier peer-reviewed conferences or journals
- Masters degree

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visitthis linkfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

J-18808-Ljbffr

Related Jobs

View all jobs

Applied Scientist, Ring AI

Applied Scientist II, AGI Vertical Services

Applied Scientist II, Trustworthy Shopping Experience (TSE) Ops Product team

Applied Scientist - generative AI, AGI

Applied Scientist, Compliance Shared Services

Senior Applied Scientist, Vertical Search

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Machine learning (ML) has become an indispensable force in the modern business world, influencing everything from targeted marketing campaigns to advanced medical diagnostics. As industries integrate predictive algorithms and data-driven decision-making into their core operations, the need for effective leadership in machine learning environments has never been greater. Whether you’re overseeing a small team of data scientists or spearheading an enterprise-scale ML project, your leadership style must accommodate rapid innovation, complex problem-solving, and diverse stakeholder expectations. This guide provides actionable insights into how you can motivate, mentor, and establish achievable goals for your machine learning teams—ensuring they thrive in data-driven environments.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.