Senior MLOps Engineer

Intapp
uk remote
8 months ago
Create job alert

As a Senior MLOps Engineer, you will play a crucial role in enabling applied AI. Your main focus will be on the design, build, and maintenance of secure, scalable and efficient ML Platform, with a platform as a product mindset, that automates the end-to-end life-cycle for traditional ML models and LLM models, as part of the Cloud platforms engineering (CPE) directorate. CPE’s mission is to enable our Engineering teams to ship value faster, securely, efficiently and reliably.

In this role, you will:

Design and implement robust MLOps and LLMOps pipelines to automate and optimize machine learning model training, testing, deployment, and scaling.

Collaborate with data scientists and software engineers to ensure operational criteria are met before deployment.

Maintain and enhance continuous integration (CI) and continuous deployment (CD) environments for machine learning systems.

Develop tools to improve visibility into the system's operation and to facilitate rapid troubleshooting and debugging.

Foster a culture of continuous improvement by incorporating feedback and lessons learned into future ML deployments.

Lead initiatives to increase the resilience and scalability of ML systems.

What you need:

Bachelor’s degree in computer science, Engineering, Statistics, or a related field.

Experience in software development or data engineering, with at least 3 years focused on MLOps or similar roles.

Proven track record in designing and deploying scalable machine learning systems in production.

Strong programming skills in Python and experience with ML frameworks and tools (e.g., TensorFlow, PyTorch, MLFlow, MetaFlow, vLLM, Kubeflow, Jupyter notebook, Azure ML Studio, Amazon Sagemaker, Apache Spark, Apache Flink).

Expertise in containerization technologies (e.g., Docker, Kubernetes) and automation tools (e.g., Jenkins, GitLab CI).

Excellent problem-solving skills and the ability to work independently or as part of a team.

Bonus if you have:

Experience with data governance and ensuring compliance with data security regulations.

Familiarity with performance tuning of big data technologies.

LLM Model development

What you will gain at Intapp:

Our culture at Intapp emphasizes accountability, responsibility, and growth. We support each other in a positive, open atmosphere that fosters creativity, approachability, and teamwork. We’re committed to creating a modern work environment that’s connected yet flexible, supporting both professional success and work-life balance. In return for your passion, commitment, and collaborative approach, we offer:

Competitive base salary plus variable compensation and equity

Generous paid parental leave, including adoptive leave

Traditional comprehensive benefits, plus:

Generous Paid Time Off

Tuition reimbursement plan

Family Formation benefit offered by Carrot

Wellness programs and benefits provided by Modern Health

Paid volunteer time off and donation matching for the causes you care about

Opportunities for personal growth and professional development supported by a community of talented professionals

An open, collaborative environment where your background and contributions are valued

Experience at a growing public company where you can make an impact and achieve your goals

Open offices and kitchens stocked with beverages and snacks

Related Jobs

View all jobs

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLops (Full Stack) Engineer | London | Foundation Models

Principal MLOps Engineer - Chase UK

Graduate AI & Machine Learning Engineer | London, UK

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.