Applied Scientist, Amazon Music Search

Amazon
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior MLOps Engineer

Data Scientist (Knowledge Graph)

Data Scientist (Knowledge Graph)

Data Scientist (Knowledge Graph)

Data Scientist (Knowledge Graph)

Data Scientist (Knowledge Graph)

Amazon Music Search team is seeking an Applied Scientist who will join a team of experts in the field of machine learning, and work together to break new ground in the world of understanding and classifying different forms of music, and creating interactive experiences to help users find the music they are in the mood for. We work on machine learning problems for music classification, recommender systems, dialogue systems, NLP, and music information retrieval. You'll work in a collaborative environment where you can pursue applied research, with many peta-bytes of data, work on problems that haven’t been solved before, quickly implement and deploy your algorithmic ideas at scale, understand whether they succeed via statistically relevant experiments across millions of customers, and publish your research. You'll see the work you do directly improve the experience of Amazon Music customers on Alexa/Echo, mobile, and web.


Key job responsibilities

  1. Use machine learning, deep learning, LLMs and NLP techniques to create scalable solutions for business problems
  2. Analyze and extract relevant information from large amounts of Amazon's data to help automate and optimize key processes
  3. Design, development and evaluation of highly innovative models for predictive learning
  4. Work closely with software engineering teams to drive model implementations and new feature creations
  5. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
  6. Research and implement novel machine learning and statistical approaches


About the team

Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Learn more athttps://www.amazon.com/music.


BASIC QUALIFICATIONS

  1. Experience programming in Java, C++, Python or related language
  2. Experience with SQL and an RDBMS (e.g., Oracle) or Data Warehouse
  3. Experience in state-of-the-art deep learning models architecture design and deep learning training and optimization and model pruning
  4. Bachelor's degree or above in computer science, mathematics, statistics, machine learning or equivalent quantitative field


PREFERRED QUALIFICATIONS

  1. Experience implementing algorithms using both toolkits and self-developed code
  2. Have publications at top-tier peer-reviewed conferences or journals
  3. Master's degree or above in computer science, mathematics, statistics, machine learning or equivalent quantitative field


Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Machine Learning Degrees (2025 Guide)

Explore ten UK universities that deliver world-class machine-learning degrees in 2025. Compare entry requirements, course content, research strength and industry links to find the programme that fits your goals. Machine learning (ML) has shifted from academic curiosity to the engine powering everything from personalised medicine to autonomous vehicles. UK universities have long been pioneers in the field, and their programmes now blend rigorous theory with hands-on practice on industrial-scale datasets. Below, we highlight ten institutions whose undergraduate or postgraduate pathways focus squarely on machine learning. League tables move each year, but these universities consistently excel in teaching, research and collaboration with industry.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.