National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Applied Scientist, Amazon Ads

Amazon Development Centre (Scotland) Limited
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist, Amazon Ads

Data Scientist, ADSP: Guidance

Applied Scientist II, ATS Machine Learning & Engineering

Applied Scientist, ATS Machine Learning & Engineering (ML&E)

Applied Scientist, ATS Machine Learning & Engineering

Applied Scientist II (Machine Learning), ITA - Automated Performance Evaluation

Re-imagining the realms of what’s possible in advertising.

Amazon is re-imagining advertising. Amazon Ads operates at the intersection of eCommerce and advertising and offering a rich array of advertising solutions and audience insights so businesses and brands can create relevant campaigns that produce measurable results.

At Amazon Ads, you can build models that impact millions every day. And we’re passionate about solving real-world problems while using cutting-edge machine learning and artificial intelligence to do this.

For example, our applied science teams leverage a variety of advanced machine learning and cloud computing techniques to power Amazon's advertising offerings. This includes building algorithms and cloud services using clustering, deep neural networks, and other ML approaches to make ads more relevant while respecting privacy. They develop machine learning models to predict ad outcomes and select the optimal ad for each shopper, context, and advertiser objective, leveraging techniques like multi-task learning, bandit/reinforcement learning, counterfactual estimation, and low-latency extreme ML. The teams also utilize Spark, EMR, and Elasticsearch to extract insights from big data and deliver recommendations to advertisers at scale, continuously improving through offline analysis and impact evaluation. Additionally, they apply generative AI models for dynamic creative optimization and video experimentation and automation.

Underpinning these efforts are unique technical challenges, such as operating at unprecedented scale (hundreds of thousands of requests per second with 40ms latency) while respecting privacy and customer trust guarantees, and solving a wide variety of complex computational advertising problems related to traffic quality, viewability, brand safety, and more.


Help us take innovation in advertising to the next level.

Our teams are based in our fast-growing tech hubs in London and Edinburgh. Learn more about Amazon Ads, employee stories and available opportunities here:


Key job responsibilities
* Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment.
* Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems.
* Promote the culture of experimentation and applied science at Amazon.
* Demonstrate ability to meet deadlines while managing multiple projects.
* Excel communication and presentation skills working with multiple peer groups and different levels of management
* Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles

We are open to hiring candidates to work out of one of the following locations:

Edinburgh, MLN, GBR | London, GBR

BASIC QUALIFICATIONS

- PhD, or a Master's degree and experience in CS, CE, ML or related field research
- Experience programming in Java, C++, Python or related language
- Experience in building machine learning models for business application
- Experience building machine learning models or developing algorithms for business application
- Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing

PREFERRED QUALIFICATIONS

- Experience developing and implementing deep learning algorithms, particularly with respect to computer vision algorithms
- Experience in patents or publications at top-tier peer-reviewed conferences or journals
- Experience with generative deep learning models applicable to the creation of synthetic humans like CNNs, GANs, VAEs and NF
- Experience with popular deep learning frameworks such as MxNet and Tensor Flow

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.