Applied AIML Lead- Python & Data Science Engineering

JPMorganChase
Glasgow
2 days ago
Create job alert
Overview

If you are looking for a game-changing career, working for one of the world's leading financial institutions, you’ve come to the right place.

Responsibilities
  • Co-Develop and implement LLM-based, machine learning models and algorithms to solve complex operational challenges.
  • Design and deploy generative AI applications to automate and optimize business processes.
  • Collaborate with stakeholders & Data Scientists to understand business needs and translate them into technical solutions.
  • Analyze large datasets to extract actionable insights and drive data-driven decision-making.
  • Ensure the scalability and reliability of AI/ML solutions in a production environment.
  • Stay up-to-date with the latest advancements in AI/ML technologies & LLMs and integrate them into our operations.
  • Mentor and guide junior team members in coding & SDLC standards, AI/ML best practices and methodologies.
Required Qualifications, Capabilities, And Skills
  • Master’s or Bachelors in Computer Science, Data Science, Machine Learning, or a related field, with a focus on engineering.
  • Excellent API design and engineering experience with proven usage of API python frameworks Quart, Flask or FastAPI
  • Proficiency in Python & async programming, with a strong emphasis on writing comprehensive test cases using testing frameworks such as pytest to ensure code quality and reliability
  • Expertise with Index & Vector DBs such as Opensearch./ElasticSearch
  • Extensive experience in deploying AI/ML applications in a production environment, with skills in deploying models on AWS platforms such as SageMaker or Bedrock.
  • Champion of MLOps practices, encompassing the full cycle from design, experimentation, deployment, to monitoring and maintenance of machine learning models.
  • Experience with generative AI models, including GANs, VAEs, or transformers. Experience with Diffusion models is a plus.
  • Solid understanding of data preprocessing, prompt engineering, feature engineering, and model evaluation techniques.
  • Proficiency in AI coding tools and editors such as Cursor, Windsurf or CoPilot
  • Familiarity in machine learning frameworks such as TensorFlow, PyTorch, PyTorch Lightning, or Scikit-learn.
  • Familiarity with cloud platforms (AWS) and containerization technologies (Docker, Kubernetes, Amazon EKS, ECS).
Preferred Qualifications, Capabilities, And Skills
  • Expertise in cloud storage such as RDS and S3
  • Excellent problem-solving skills and the ability to work independently and collaboratively.
  • Strong communication skills to effectively convey complex technical concepts to non-technical stakeholders.
  • Proven experience in leading projects and teams, with a track record of successful project delivery.
About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world’s most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants’ and employees’ religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.

About The Team

J.P. Morgan Asset & Wealth Management delivers industry-leading investment management and private banking solutions. Asset Management provides individuals, advisors and institutions with strategies and expertise that span the full spectrum of asset classes through our global network of investment professionals. Wealth Management helps individuals, families and foundations take a more intentional approach to their wealth or finances to better define, focus and realize their goals.


#J-18808-Ljbffr

Related Jobs

View all jobs

Applied AIML Lead- Python & Data Science Engineering

Applied AIML Lead- Python & Data Science Engineering

Applied AIML Lead & Python Data Science Engineer

Senior Applied AIML Lead | Python & Data Science Engineer

Senior AI/ML Scientist, Applied NLP & Generative AI

Senior RF AI/ML Data Scientist — DSP & SDR Onsite

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.